
P a g e | 18

 int i,j;

 for(i=0;i<n;i++)

 {

 for(j=0;j<n-i-1;j++)

 {

 if(arr[j]>arr[j+1])

 {

 swap(&arr[j],&arr[j+1]);;

 }

 }

 }

}

int main()

{

 int i,choice;

 int a[10]={2,56,189,7,4,6,123,44,55,10};

 int n=sizeof(a)/sizeof(a[0]);

 printf("Given array is: \n");

 for(i=0;i<n;i++)

 {

 printf("%d\t",a[i]);

 }

P a g e | 19

 printf("\nSelect any sorting technique to apply on the
array\n1.Bubble Sort\n2.Insertion Sort\n3.Selection Sort\n");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1:

 bubbsort(a,n);

 printf("\nSorted array is:\n");

 for(i=0;i<n;i++)

 {

 printf("%d\t",a[i]);

 }

 exit(1);

 case 2:

 insersort(a,n);

 printf("\nSorted array is:\n");

 for(i=0;i<n;i++)

 {

 printf("%d\t",a[i]);

 }

 exit(1);

 case 3:

 selecsort(a,n);

P a g e | 20

 printf("\nSorted array is:\n");

 for(i=0;i<n;i++)

 {

 printf("%d\t",a[i]);

 }

 exit(1);

 }

}

Output:-

Given array is:

2 56 189 7 4 6 123 44 55 10

Select any sorting technique to apply on the array

1.Bubble Sort

2.Insertion Sort

3.Selection Sort

2

Sorted array is:

2 4 6 7 10 44 55 56 123 189

P a g e | 21

Discussions:-

Time Complexity:

 Worst Case Average
Case

Best Case

Bubble Sort O(n2) O(n2) O(n2)
Selection
Sort

O(n2) O(n2) O(n2)

Insertion Sort O(n2) O(n2) O(n)

 When the given data is almost sorted or already sorted
insertion sort works the best because in the inner loop
there are little to no movement of the data that‟s it does

not uses all the passes. That‟s why the best case of

insertion sort is O(n).

P a g e | 22

Assignment No.3 Date:-7/3/19

Problem Statement:- Write a program to sort a list of elements
using Quicksort.

Algorithm:-

Algorithm quicksort()

Input: An array ‟a‟ with upper bound „high‟ and lower bound

„low‟.

Output: Elements are in sorted manner.

Steps:

Set low=1 and high=n

pi=partition(a,low,high)

quicksort(a,low,pi-1)

quicksort(a,pi+1,high)

Stop

In this algorithm there is a procedure called partition() the
steps of the procedure is as follows,

Procedure partition()

Steps:

pivot=arr[high]

i=low-1

for(j=low to high) do

 If(a[j]<=pivot) then

 i=i+1

P a g e | 23

 swap(arr[i],arr[j])

 End If

End For

Swap(arr[i+1],arr[high])

Stop

Source Code:-

//Quicksort

#include<stdio.h>

void swap(int *x,int *y)

{

 int temp;

 temp=*x;

 *x=*y;

 *y=temp;

}

int partition(int arr[],int low,int high)

{

 int i,j,pivot=arr[high];

 i=(low-1);

 for(j=low;j<=high-1;j++)

 {

 if(arr[j]<=pivot)

P a g e | 24

 {

 i++;

 swap(&arr[i],&arr[j]);

 }

 }

 swap(&arr[i+1],&arr[high]);

 return (i+1);

}

void quicksort(int arr[],int low,int high)

{

 if(low<high)

 {

 int p=partition(arr,low,high);

 quicksort(arr,low,p-1);

 quicksort(arr,p+1,high);

 }

}

int main()

{

 int i;

 int a[10]={2,56,189,7,4,6,123,44,55,10};

 int n=sizeof(a)/sizeof(a[0]);

P a g e | 25

 printf("Given array is: \n");

 for(i=0;i<n;i++)

 {

 printf("%d\t",a[i]);

 }

 quicksort(a,0,n-1);

 printf("\nSorted array is:\n");

 for(i=0;i<n;i++)

 {

 printf("%d\t",a[i]);

 }

 return 0;

}

Output:-

Given array is:

2 56 189 7 4 6 123 44 55 10

Sorted array is:

2 4 6 7 10 44 55 56 123 189

P a g e | 26

Discussions:-

 The worst case occurs when the partition process always
picks greatest or smallest element as pivot. If we consider
above partition strategy where last element is always
picked as pivot, the worst case would occur when the
array is already sorted in increasing or decreasing order.
The complexity of quicksort in worst case is O(n2)

 The best case occurs when the partition process always
picks the middle element as pivot. The Complexity of
quicksort in best case is O(nlogn)

 The Average case can be considered as the array is 50%
sorted. The Complexity of Quicksort in Average case is
O(nlogn)

P a g e | 27

Assignment No.4 Date:-7/3/19

Problem Statement:- Write a program to sort a list of elements
using Merge sort.

Algorithm:-

Algorithm merge_sort()

Input: An array „a‟ with lower bound „lb‟ and upper bound „ub‟

Output: Elements are in sorted manner.

Steps:

mid=(lb+ub)/2;

If(lb<ub) then

merge_sort(arr,lb,mid)

 merge_sort(arr,mid+1,ub)

 merge(arr,lb,mid,ub)

End If

Stop

In this Algorithm,there is a procedure called merge(), the
steps of the merge() is as follows

Procedure merge()

Steps:

Set i=lb,j=mid+1,index=lb

While(i<=mid && j<=ub) do //array is split into two parts

P a g e | 28

 If(a[i]<a[j]) then

 temp[index]=a[i]

 i=i+1

 Else

 temp[index]=a[j]

 j=j+1

 End If

 Index=index+1

End While

If(i>mid) then

 While(j<=ub) do

 temp[index]=a[j]

 index=index+1

 j=j+1

 End While

Else

 While(i<=mid)

 temp[index]=a[i]

 index=index+1

 j=j+1

 End While

End If

P a g e | 29

For(k=lb to index) do

 a[k]=temp[k]

End For

Stop

Source Code:-

//merge sort

#include<stdio.h>

#define size 100

void merge(int a[],int lb,int mid,int ub)

{

 int i=lb, j=mid+1, index=lb, temp[size], k;

 while((i<=mid) && (j<=ub))

 {

 if(a[i] < a[j])

 {

 temp[index] = a[i++];

 }

 else

 {

 temp[index] = a[j++];

 }

 index++;

P a g e | 30

 }

 if(i>mid)

 {

 while(j<=ub)

 {

 temp[index++] = a[j++];

 }

 }

 else

 {

 while(i<=mid)

 {

 temp[index++] = a[i++];

 }

 }

 for(k=lb;k<index;k++)

 a[k] = temp[k];

}

void mergesort(int arr[],int lb,int ub)

{

 int mid=(lb+ub)/2;

 if(lb<ub)

P a g e | 31

 {

 mergesort(arr,lb,mid);

 mergesort(arr,mid+1,ub);

 merge(arr,lb,mid,ub);

 }

}

int main()

{

 int i;

 int a[10]={2,56,189,7,4,6,123,44,55,10};

 int n=sizeof(a)/sizeof(a[0]);

 printf("Given array is: \n");

 for(i=0;i<n;i++)

 {

 printf("%d\t",a[i]);

 }

 mergesort(a,0,n-1);

 printf("\nSorted array is:\n");

 for(i=0;i<n;i++)

 {

 printf("%d\t",a[i]);

 }

P a g e | 32

 return 0;

}

Output:-

Given array is:

2 56 189 7 4 6 123 44 55 10

Sorted array is:

2 4 6 7 10 44 55 56 123 189

Discussions:-

 Merge sort is a sorting algorithm that uses the divide,
conquer, and combine algorithmic paradigm.

 The running time of merge sort in the average
case and the worst case can be given as O(n logn).
Although merge sort has an optimal time
complexity, it needs an additional space of O(n)
for the temporary array TEMP.

P a g e | 33

Assignment No.5 Date:-25/3/19

Problem Statement:- Write a program to sort a list of elements
using Radix Sort.

Algorithm:-

Algorithm radix_sort()

Input: An array „a‟ with size „n‟

Output: Elements are in sorted manner.

Steps:

Set NOP=0, divisor=1

large=largest(a,n)

While(large>0) do

 NOP++

 large=large/10 //large is divided by 10 because decimal
 numbers are being sorted

End While

For(pass=1 to NOP) do

 For(i=1 to 10) do

 bucket_count[i]=0

 End For

 For(i=1 to n) do

 rem=(a[i]/divisor)%10

 bucket[remainder][bucket_count[remainder]]=a[i]

P a g e | 34

 bucket_count[remainder]=bucket_count[remainder]+1

 End For

 i=0

 For(k=1 to 10) do

 For(j=0 to bucket_count[k]) do

 a[i]=bucket[k][j]

 i=i+1

 End For

 End For

divisor=divisor*10

End For

Stop

In this algorithm, there is a procedure called largest(), the
steps of the largest is as follows

Procedure largest()

Steps:

Set large=a[1] //array address starting from 1

For(i=2 to n) do

 If(a[i]>large) then

 large=a[i]

 End For

Print large

P a g e | 35

Stop

Source Code:-

#include <stdio.h>

#define size 10

int largest(int arr[], int n);

void radix_sort(int arr[], int n);

void main()

{

 int arr[size], i, n;

 printf("\n Enter the number of elements in the array: ");

 scanf("%d", &n);

 printf("\n Enter the elements of the array: ");

 for(i=0;i<n;i++)

 {

 scanf("%d", &arr[i]);

 }

 radix_sort(arr, n);

 printf("\n The sorted array is: \n");

 for(i=0;i<n;i++)

 printf(" %d\t", arr[i]);

}

P a g e | 36

int largest(int arr[], int n)

{

 int large=arr[0], i;

 for(i=1;i<n;i++)

 {

 if(arr[i]>large)

 large = arr[i];

 }

 return large;

}

void radix_sort(int arr[], int n)

{

 int bucket[size][size], bucket_count[size];

 int i, j, k, remainder, NOP=0, divisor=1, large, pass;

 large = largest(arr, n);

 while(large>0)

 {

 NOP++;

 large/=size;

 }

 for(pass=0;pass<NOP;pass++) // Initialize the buckets

 {

P a g e | 37

 for(i=0;i<size;i++)

 bucket_count[i]=0;

 for(i=0;i<n;i++)

 {

 // sort the numbers according to the digit at passth
place

 remainder = (arr[i]/divisor)%size;

 bucket[remainder][bucket_count[remainder]] =
arr[i];

 bucket_count[remainder]++;

 }

 // collect the numbers after PASS pass

 i=0;

 for(k=0;k<size;k++)

 {

 for(j=0;j<bucket_count[k];j++)

 {

 arr[i] = bucket[k][j];

 i++;

 }

 }

 divisor *= size;

 }

P a g e | 38

}

Output:-

Enter the number of elements in the array: 5

 Enter the elements of the array: 12345

345

8756

2

99

 The sorted array is:

 2 99 345 8756 12345

Discussions:-

 To calculate the complexity of radix sort algorithm,
assume that there are n numbers that have to be sorted
and k is the number of digits in the largest number. In this
case, the radix sort algorithm is called a total of k times.
The inner loop is executed n times. Hence, the entire radix
sort algorithm takes O(kn) time to execute. When radix
sort is applied on a data set of finite size (very small set of
numbers), then the algorithm runs in O(n) asymptotic time.

P a g e | 39

 Radix sort is a very simple algorithm. When programmed
properly, radix sort is one of the fastest sorting algorithms
for numbers or strings of letters.

 Drawback of radix sort is that the algorithm is dependent
on digits or letters. This feature compromises with the
flexibility to sort input of any data type. For every different
data type, the algorithm has to be rewritten.

P a g e | 40

Assignment No.6 Date:-2/4/19

Problem Statement:- Write a program to sort a list of elements
using Heap Sort.

Algorithm:-

Algorithm create_heap()

Input: An array „a‟ with size „n‟

Output: Elements are in sorted manner.

Steps:

For(i=0 to n) do

 Insert(a[i],n)

End For

In this Algorithm, there is a procedure called Insert(), the
steps of the Insert() is as follows,

Procedure Insert()

Steps:

While(loc>0) do

 parent=(loc-1)/2

 If(num<=a[parent]) then

 a[loc]=num

 End If

 a[loc]=a[parent]

 loc=parent

End While

P a g e | 41

a[0]=num

Stop

Algorithm heap_sort()

Input: An array „a‟ with size „n‟

Output: Elements are in sorted manner.

Steps:

For(l=n to 1) do

 Del_root(l)

End For

In this Algorithm, there is a procedure called Del_root(),
the steps of the Del_root() is as follows,

Procedure Del_root()

Steps:

a[i]=a[last]

a[last]=temp

left=2*i+1

right=2*i+2

While(right<left) do

 If(a[right]<=a[left]) then

 Swap(a[i],a[left])

 i=left

P a g e | 42

Else

 Swap(a[i],a[right])

 I=right

 End If

 left=2*i+1

 right=2*i+2

End While

If(left=last-1 && a[i]<a[left]) then

 Swap(a[i],a[left])

End If

Display a

Stop

Source Code:-

/* HEAP SORT */

#include<stdio.h>

#include<stdlib.h>

int arr[100], n;

void insert (int, int);

void create_heap ();

void heap_sort ();

void del_root (int);

void display ();

P a g e | 43

int main()

{

 int i;

 printf("\n\t\t # HEAP SORT #");

 printf("\n--");

 printf ("\n\n Number of elements to Insert (Max 100) : ");

 scanf ("%d",&n);

 if (n<0 || n>100)

 {

 printf("\n\tError : Invalid Input...cannot process.");

 exit (0);

 }

 printf("\n\n");

 for (i=0;i<n;i++)

 {

 printf ("\tEnter ARRAY [%d] = ",i);

 scanf ("%d",&arr[i]);

 }

 printf ("\n\n :: The Inputted Array :: \n\n");

 printf("\t");

 display ();

 create_heap (); // heapify - creation of heap

P a g e | 44

 printf ("\n\n :: Construction of Heap :: \n\n");

 display ();

 heap_sort (); // sorting - using heap sort

 printf ("\n\n :: The Sorted Array :: \n\n");

 printf ("\t");

 display ();

 return 0;

}

///

/* Function definitions */

///

void insert (int num, int loc)

{

 int parent;

 while (loc > 0)

 {

 parent=(loc-1)/2;

 if (num <= arr[parent])

 {

 arr[loc]=num;

 return;

 }

P a g e | 45

 arr[loc]=arr[parent];

 loc=parent;

 }

 arr[0]=num;

}

///

void create_heap ()

{

 int i;

 for (i=0;i<n;i++)

 insert (arr[i],i); // insertion into heap

}

///

void heap_sort ()

{

 int last;

 for (last=n-1;last>0;last--)

 del_root (last);

}

///

void del_root (int last)

{

P a g e | 46

 int left, right, i, temp;

 i=0;

 /* exchange of last element with root */

 temp=arr[i];

 arr[i]=arr[last];

 arr[last]=temp;

 left =2*i+1; // left child of root

 right=2*i+2; // right child of root

 while (right < last)

 {

 if ((arr[i] >= arr[left]) && (arr[i] >= arr[right]))

 return;

 if (arr[right] <= arr[left])

 {

 temp=arr[i];

 arr[i]=arr[left];

 arr[left]=temp;

 i=left;

 }

 else

 {

 temp=arr[i];

P a g e | 47

 arr[i]=arr[right];

 arr[right]=temp;

 i=right;

 }

 left =2*i+1;

 right=2*i+2;

 }

 if ((left == last-1) && (arr[i] < arr[left]))

 {

 temp=arr[i];

 arr[i]=arr[left];

 arr[left]=temp;

 }

 display ();

}

///

void display ()

{

 int i;

 printf("\t");

 for (i=0;i<n;i++)

 printf(" %d ", arr[i]);

P a g e | 48

 printf("\n");

}

///

Output:-

 # HEAP SORT #

--

 Number of elements to Insert (Max 100) : 5

 Enter ARRAY [0] = 7

 Enter ARRAY [1] = 45

 Enter ARRAY [2] = 3

 Enter ARRAY [3] = 2

 Enter ARRAY [4] = 21

 :: The Inputted Array ::

 7 45 3 2 21

P a g e | 49

 :: Construction of Heap ::

 45 21 3 2 7

 21 7 3 2 45

 7 2 3 21 45

 3 2 7 21 45

 2 3 7 21 45

 :: The Sorted Array ::

 2 3 7 21 45

Discussions:-

Heap sort uses two heap operations: insertion and root
deletion. Each element extracted from the
root is placed in the last empty location of the array.
In phase 1, when we build a heap, the number of comparisons
to find the right location of the new element in H cannot exceed
the depth of H. Since H is a complete tree, its depth cannot
exceed m, where m is the number of elements in heap H.
Thus, the total number of comparisons g(n) to insert n elements
of ARR in H is bounded as:
g(n) <= n log n Hence, the running time of the first phase of the
heap sort algorithm is O(n log n).
In phase 2, we have H which is a complete tree with m
elements having left and right sub-trees as heaps. Assuming L
to be the root of the tree, reheaping the tree would need 4

P a g e | 50

comparisons to move L one step down the tree H. Since the
depth of H cannot exceed O(log m), reheaping the tree
will require a maximum of 4 log m comparisons to find the right
location of L in H.
Since n elements will be deleted from heap H, reheaping will be
done n times. Therefore, the number of comparisons to delete
n elements is bounded as:
h(n) <= 4n log n
Hence, the running time of the second phase of the heap sort
algorithm is O(n log n).
Each phase requires time proportional to O(n log n). Therefore,
the running time to sort an array of n elements in the worst
case is proportional to O(n log n).
Therefore, we can conclude that heap sort is a simple, fast, and
stable sorting algorithm that can be used to sort large sets of
data efficiently.

P a g e | 51

Assignment No.7 Date:-2/4/19

Problem Statement:- Write a program to sort a list of elements
using Shell Sort.

Algorithm:-

Algorithm shell_sort()

Input: An array „a‟ with size „n‟

Output: Elements are in sorted manner.

Steps:

Set flag=1, g_size=n

While(flag=1 && g_size>1) do

 flag=0

 g_size=(g_size+1)/2

 For(i=0 to n-g_size) do

 If (a[i+g_size]>a[i]) then

 Swap(a[i+g_size],a[i])

 flag=0

 End If

 End for

End While

Source Code:-

#include<stdio.h>

void main()

{

P a g e | 52

int arr[10]={-1};

int i, j, n, flag = 1, gap_size, temp;

printf("\n Enter the number of elements in the array: ");

scanf("%d", &n);

printf("\n Enter %d numbers: ",n); // n was added

for(i=0;i<n;i++)

scanf("%d", &arr[i]);

gap_size = n;

while(flag == 1 || gap_size > 1)

{

flag = 0;

gap_size = (gap_size + 1) / 2;

for(i=0; i< (n - gap_size); i++)

{

if(arr[i+gap_size] < arr[i])

{

temp = arr[i+gap_size];

arr[i+gap_size] = arr[i];

arr[i] = temp;

flag = 0;

}

}

P a g e | 53

}

printf("\n The sorted array is: \n");

for(i=0;i<n;i++){

printf(" %d\t", arr[i]);

}

}

Output:-

Enter the number of elements in the array: 5

 Enter 5 numbers: 1315

3

345

6

29

 The sorted array is:

 3 6 29 345 1315

Discussions:-

Time complexity of above implementation pf shellsort is O(n2).
In the above implementation gap is reduce by half in every
iteration.

P a g e | 54

Assignment No.8 Date:-30/4/19

Problem Statement:- Write a Program to create a Binary
Search Tree and include following operations in tree:

 (a) Insertion (Recursive and Iterative Implementation)

(b) Deletion by copying

(c) Deletion by Merging

(d) Search a no. in BST

(e) Display its preorder, postorder and inorder traversals
Recursively

(f) Display its preorder, postorder and inorder traversals
Iteratively

(g) Display its level-by-level traversals

(h) Count the non-leaf nodes and leaf nodes

(i) Display height of tree

(j) Create a mirror image of tree

(k) Check whether two BSTs are equal or not

Algorithm:-

SearchElement (TREE, VAL)
Step 1: IF TREE DATA = VAL OR TREE = NULL
Return TREE
ELSE
IF VAL < TREE DATA
Return searchElement(TREE LEFT, VAL)
ELSE
Return searchElement(TREE RIGHT, VAL)
[END OF IF]
[END OF IF]

P a g e | 55

Step 2: END

Insert (TREE, VAL)
Step 1: IF TREE = NULL
Allocate memory for TREE
SET TREE DATA = VAL
SET TREE LEFT = TREE RIGHT = NULL
ELSE
IF VAL < TREE DATA
Insert(TREE LEFT, VAL)
ELSE
Insert(TREE RIGHT, VAL)
[END OF IF]
[END OF IF]
Step 2: END

Delete (TREE, VAL)
Step 1: IF TREE = NULL
Write "VAL not found in the tree"
ELSE IF VAL < TREE DATA
Delete(TREE->LEFT, VAL)
ELSE IF VAL > TREE DATA
Delete(TREE RIGHT, VAL)
ELSE IF TREE LEFT AND TREE RIGHT
SET TEMP = findLargestNode(TREE LEFT)
SET TREE DATA = TEMP DATA
Delete(TREE LEFT, TEMP DATA)
ELSE
SET TEMP = TREE
IF TREE LEFT = NULL AND TREE RIGHT = NULL
SET TREE = NULL
ELSE IF TREE LEFT != NULL
SET TREE = TREE LEFT
ELSE
SET TREE = TREE RIGHT
[END OF IF]
FREE TEMP
[END OF IF]

P a g e | 56

Step 2: END

Height (TREE)
Step 1: IF TREE = NULL
Return
ELSE
SET LeftHeight = Height(TREE LEFT)
SET RightHeight = Height(TREE RIGHT)
IF LeftHeight > RightHeight
Return LeftHeight + 1
ELSE
Return RightHeight + 1
[END OF IF]
[END OF IF]
Step 2: END

totalNodes(TREE)
Step 1: IF TREE = NULL
Return
ELSE
Return totalNodes(TREE LEFT) + totalNodes(TREE RIGHT) +
1
[END OF IF]
Step 2: END

totalInternalNodes(TREE)
Step 1: IF TREE = NULL
Return
[END OF IF]
IF TREE LEFT = NULL AND TREE RIGHT = NULL
Return
ELSE
Return totalInternalNodes(TREE LEFT) +
totalInternalNodes(TREE RIGHT) + 1
[END OF IF]
Step 2: END

P a g e | 57

totalExternalNodes(TREE)
Step 1: IF TREE = NULL
Return
ELSE IF TREE LEFT = NULL AND TREE RIGHT = NULL
Return 1
ELSE
Return totalExternalNodes(TREE LEFT) +
totalExternalNodes(TREE RIGHT)
[END OF IF]
Step 2: END

MirrorImage(TREE)
Step 1: IF TREE != NULL
MirrorImage(TREE LEFT)
MirrorImage(TREE RIGHT)
SET TEMP = TREE LEFT
SET TREE LEFT = TREE RIGHT
SET TREE RIGHT = TEMP
[END OF IF]
Step 2: END

deleteTree(TREE)
Step 1: IF TREE != NULL
deleteTree (TREE LEFT)
deleteTree (TREE RIGHT)
Free (TREE)
[END OF IF]
Step 2: END

findSmallestElement(TREE)
Step 1: IF TREE = NULL OR TREE LEFT = NULL
Returen TREE
ELSE
Return findSmallestElement(TREE LEFT)
[END OF IF]

P a g e | 58

Step 2: END

findLargestElement(TREE)
Step 1: IF TREE = NULL OR TREE RIGHT = NULL
Return TREE
ELSE
Return findLargestElement(TREE RIGHT)
[END OF IF]
Step 2: END

Source Code:-

#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node
{
int data;
struct node *left;
struct node *right;
};
struct node *tree;
void create_tree(struct node *);
struct node *insertElement(struct node *, int);
void preorderTraversal(struct node *);
void inorderTraversal(struct node *);
void postorderTraversal(struct node *);
struct node *findSmallestElement(struct node *);
struct node *findLargestElement(struct node *);
struct node *deleteElement(struct node *, int);
struct node *mirrorImage(struct node *);
int totalNodes(struct node *);
int totalExternalNodes(struct node *);
int totalInternalNodes(struct node *);
int Height(struct node *);
struct node *deleteTree(struct node *);

P a g e | 59

int main()
{
int option, val;
struct node *ptr;
create_tree(tree);
clrscr();
do
{
printf("\n ******MAIN MENU******* \n");
printf("\n 1. Insert Element");
printf("\n 2. Preorder Traversal");
printf("\n 3. Inorder Traversal");
printf("\n 4. Postorder Traversal");
printf("\n 5. Find the smallest element");
printf("\n 6. Find the largest element");
printf("\n 7. Delete an element");
printf("\n 8. Count the total number of nodes");
printf("\n 9. Count the total number of external nodes");
printf("\n 10. Count the total number of internal nodes");
printf("\n 11. Determine the height of the tree");
printf("\n 12. Find the mirror image of the tree");
printf("\n 13. Delete the tree");
printf("\n 14. Exit");
printf("\n\n Enter your option : ");
scanf("%d", &option);
switch(option)
{
case 1:
printf("\n Enter the value of the new node : ");
scanf("%d", &val);
tree = insertElement(tree, val);
break;
case 2:
printf("\n The elements of the tree are : \n");
preorderTraversal(tree);
break;
case 3:

P a g e | 60

printf("\n The elements of the tree are : \n");
inorderTraversal(tree);
break;
case 4:
printf("\n The elements of the tree are : \n");
postorderTraversal(tree);
break;
case 5:
ptr = findSmallestElement(tree);
printf("\n Smallest element is :%d",ptr–>data);
break;
case 6:
ptr = findLargestElement(tree);
printf("\n Largest element is : %d", ptr–>data);
break;
case 7:
printf("\n Enter the element to be deleted : ");
scanf("%d", &val);
tree = deleteElement(tree, val);
break;
case 8:
printf("\n Total no. of nodes = %d", totalNodes(tree));
break;
case 9:
printf("\n Total no. of external nodes = %d",
totalExternalNodes(tree));
break;
case 10:
printf("\n Total no. of internal nodes = %d",
totalInternalNodes(tree));
break;
case 11:
printf("\n The height of the tree = %d",Height(tree));
break;
case 12:
tree = mirrorImage(tree);
break;

P a g e | 61

case 13:
tree = deleteTree(tree);
break;
}
}while(option!=14);
getch();
return 0;
}
void create_tree(struct node *tree)
{
tree = NULL;
}
struct node *insertElement(struct node *tree, int val)
{
struct node *ptr, *nodeptr, *parentptr;
ptr = (struct node*)malloc(sizeof(struct node));
ptr–>data = val;
ptr–>left = NULL;
ptr–>right = NULL;
if(tree==NULL)
{
tree=ptr;
tree–>left=NULL;
tree–>right=NULL;
}
else
{
parentptr=NULL;
nodeptr=tree;
while(nodeptr!=NULL)
{
parentptr=nodeptr;
if(val<nodeptr–>data)
nodeptr=nodeptr–>left;
else
nodeptr = nodeptr–>right;
}

P a g e | 62

if(val<parentptr–>data)
parentptr–>left = ptr;
else
parentptr–>right = ptr;
}
return tree;
}
void preorderTraversal(struct node *tree)
{
if(tree != NULL)
{
printf("%d\t", tree–>data);
preorderTraversal(tree–>left);
preorderTraversal(tree–>right);
}
}
void inorderTraversal(struct node *tree)
{
if(tree != NULL)
{
inorderTraversal(tree->left);
printf("%d\t", tree->data);
inorderTraversal(tree->right);
}
}
void postorderTraversal(struct node *tree)
{
if(tree != NULL)
{
postorderTraversal(tree->left);
postorderTraversal(tree->right);
printf("%d\t", tree->data);
}
}
struct node *findSmallestElement(struct node *tree)
{
if((tree == NULL) || (tree->left == NULL))

P a g e | 63

return tree;
else
return findSmallestElement(tree ->left);
}
struct node *findLargestElement(struct node *tree)
{
if((tree == NULL) || (tree->right == NULL))
return tree;
else
return findLargestElement(tree->right);
}
struct node *deleteElement(struct node *tree, int val)
{
struct node *cur, *parent, *suc, *psuc, *ptr;
if(tree–>left==NULL)
{
printf("\n The tree is empty ");
return(tree);
}
parent = tree;
cur = tree–>left;
while(cur!=NULL && val!= cur–>data)
{
parent = cur;
cur = (val<cur–>data)? cur–>left:cur–>right;
}
if(cur == NULL)
{
printf("\n The value to be deleted is not present in the tree");
return(tree);
}
if(cur–>left == NULL)
ptr = cur–>right;
else if(cur–>right == NULL)
ptr = cur–>left;
else
{

P a g e | 64

// Find the in–order successor and its parent
psuc = cur;
cur = cur–>left;
while(suc–>left!=NULL)
{
psuc = suc;
suc = suc–>left;
}
if(cur==psuc)
{
// Situation 1
suc–>left = cur–>right;
}
else
{
// Situation 2
suc–>left = cur–>left;
psuc–>left = suc–>right;
suc–>right = cur–>right;
}
ptr = suc;
}
// Attach ptr to the parent node
if(parent–>left == cur)
parent–>left=ptr;
else
parent–>right=ptr;
free(cur);
return tree;
}
int totalNodes(struct node *tree)
{
if(tree==NULL)
return 0;
else
return(totalNodes(tree–>left) + totalNodes(tree–>right) + 1);
}

P a g e | 65

int totalExternalNodes(struct node *tree)
{
if(tree==NULL)
return 0;
else if((tree–>left==NULL) && (tree–>right==NULL))
return 1;
else
return (totalExternalNodes(tree–>left) +
totalExternalNodes(tree–>right));
}
int totalInternalNodes(struct node *tree)
{
if((tree==NULL) || ((tree–>left==NULL) && (tree–
>right==NULL)))
return 0;
else
return (totalInternalNodes(tree–>left)
+ totalInternalNodes(tree–>right) + 1);
}
int Height(struct node *tree)
{
int leftheight, rightheight;
if(tree==NULL)
return 0;
else
{
leftheight = Height(tree–>left);
rightheight = Height(tree–>right);
if(leftheight > rightheight)
return (leftheight + 1);
else
return (rightheight + 1);
}
}
struct node *mirrorImage(struct node *tree)
{
struct node *ptr;

P a g e | 66

if(tree!=NULL)
{
mirrorImage(tree–>left);
mirrorImage(tree–>right);
ptr=tree–>left;
ptr–>left = ptr–>right;
tree–>right = ptr;
}
}
struct node *deleteTree(struct node *tree)
{
if(tree!=NULL)
{
deleteTree(tree–>left);
deleteTree(tree–>right);
free(tree);
}
}

Output:-

*******MAIN MENU*******
1. Insert Element
2. Preorder Traversal
3. Inorder Traversal
4. Postorder Traversal
5. Find the smallest element
6. Find the largest element
7. Delete an element
8. Count the total number of nodes
9. Count the total number of external nodes
10. Count the total number of internal nodes
11. Determine the height of the tree
12. Find the mirror image of the tree
13. Delete the tree
14. Exit
Enter your option : 1

P a g e | 67

Enter the value of the new node : 1
Enter the value of the new node : 2
Enter the value of the new node : 4
Enter your option : 3
2 1 4
Enter your option : 14

Discussions:-

A binary search tree, also known as an ordered binary tree, is a
variant of binary trees in which the nodes are arranged in an
order. In a binary search tree, all the nodes in the left sub-tree
have a value less than that of the root node. Correspondingly,
all the nodes in the right sub-tree have a value either equal to
or greater than the root node. The same rule is applicable to
every sub-tree in the tree.

P a g e | 68

Assignment No.9 Date:-

Problem Statement:- Implement Linked List using templates.
Include functions for insertion, deletion and search of a number,
reverse the list and concatenate two linked lists.

Algorithm:-

Algorithm for insertion:-

Algorithm create_sll(data)

Input: A pointer called „start‟ and „data‟which is to be inserted

Output: A singly linked list with with the corresponding nodes
with a pointer pointing to the first node called „start‟

Steps:

Set start=NULL

Allocate new memory for pointer p

(p->info)=data

If(start!=NULL) then // when the list is empty

 Start=p

 (p->link)=NULL

Else

 t=p

 while(t!=NULL) do //when the list is not empty

 t=(t->link) // traverse to the last existing node

 End while

 (t->info)=data

P a g e | 69

 (t->link)=NULL

End If

Stop

Algorithm for search:

Algorithm search_sll(d,start)

Input: The data which is required to search is contained is „d‟.

And the pointer pointing to the first node called „start‟

Output: The required data will be shown.

Steps:

Set p=start

Set count=0

While((p->data)!=d) do

 p=(p->link)

count=count+1

End while

Print p->data

Print count

Stop

Algorithm for deletion:

Algorithm delete_sll(d,start)

Input: „d‟ contains the data to be searched and „start‟ is a

pointer which holds the address of the first node

Output: A singly linked list with one less node

P a g e | 70

Steps:

Set p=start

While(p->data!=d) do

 q=p //a pointer q to hold the address of previous node

 p=p->link

end while

q->link=p->link

deallocate p

Stop

Algorithm for reverse:

Algorithm reverse_sll(start)

Input: A singly linked list with a pointer pointing the first node
called start

Output: The given linked list in reverse order

Steps:

Set cur=start

prev=(cur->link)

ptr1=(prev->link)

while(ptr1!=NULL)

 (prev->link)=cur

 cur=prev

 prev=ptr1

 ptr1=(ptr1->link)

P a g e | 71

end while

(prev->link)=cur

(start->link)=NULL

start=prev

Stop

Algorithm for Merge:

Algorithm merge_sll(a,b)

Input: a and b are two pointers which contains the address of
the first node of two separate singly linked list

Output: A singly linked list which contains all the node of both
of the lists

Steps:

If(a->link=NULL) then

 (a->link)=b

Else

Merge_sll(a->link,b) * recursively calling the next node until the
 last one*\

Stop

Source Code:

#include<stdio.h>

#include<stdlib.h>

typedef struct node{

 int data;

P a g e | 72

 struct node *link;

}node;

void display_sll(node *start)

{

 node *ptr;

 if(start==NULL)

 {

 printf("List is empty\nOPERATION FAILED\n");

 }

 ptr=start;

 while(ptr!=NULL){

printf("%d\n",ptr->data); //show the data part of the
node

 ptr=ptr->link; //moves to the next pointer

 }

}

void insert_sll(node *start,int dt) //creating nodes for the list

{

 node *p,*temp;

 p=(struct node*)malloc(sizeof(node)); //allocating
memeory for the node

 if(start==NULL) //start=NULL means list is empty

 {

P a g e | 73

 p->link=NULL; //first node refers to NULL

 p->data=dt; //inserting the data into the node

 start=p; //start pointing to the first node

 printf("\nNode added successfully\n\a");

 printf("\nUpdated list: \n");

 display_sll(start);

 }

 else //start!=NULL means list is not empty and there are
other node present

 {

 temp=start; //temporary node type pointer holds the
value of start

 while(temp->link!=NULL)//while it is not the end of the
lsit

 {

 temp=temp->link; //moves to the next node

 }

 temp->link=p; //temp points to the new node

 p->link=NULL; //new node points to NULL to identify
the node as the last node

 p->data=dt; //inserting the data part at the node

 printf("\nNode added successfully\n\a");

 printf("\nUpdated list: \n");

 display_sll(start); //displaying the list

P a g e | 74

 }

}

void search_sll(node *start,int dt)

{

 node *p=start;

 int count=0; //count variable is used to tell the position of
the data

 while(p->data!=dt) //traverse untill the data is found

 {

 p=p->link;

 count++;

 }

 printf("The following data %d is situated at %d
position\n\a",p->data,count);

}

void del_sll(node *start,int dt){

 node *p=start,*q;

 while(p->data!=dt) //traverse until the location is found

 {

 q=p; //q pointer is used to store the previous value

 p=p->link;

 }

 q->link=p->link;

P a g e | 75

 free(p);

 printf("Node deleted successfully\n\a");

 printf("Updated List\n");

 display_sll(start);

}

void reverse_sll(node* start)

{

 node *cur=start,*prev=cur->link,*ptr1=prev->link;

 while(ptr1!=NULL)

 {

 prev->link=cur;

 cur=prev;

 prev=ptr1;

 ptr1=ptr1->link;

 }

 prev->link=cur;

 start->link=NULL;

 start=prev;

 printf("Updated List:\n");

 display_sll(start);

}

void merge_sll(node* a,node* b)

P a g e | 76

{

 if(a->link==NULL)

 {

 a->link=b; // merging the last node of a with the first
node of b

 printf("Both of the list are merged into list a\n\a");

 }

 else

 merge_sll(a->link,b); // recursively calls for the next node

}

int main()

{

 struct node *prev,*a,*b,*p;

 int n,i,option,l,dat;

 printf("Enter the number of nodes to be entered in list
a:\t");

 scanf("%d",&n);

 a=NULL;

 for(i=1;i<=n;i++)

 {

 p=(node*)malloc(sizeof(node));

 printf("Enter the data for the node:\t");

 scanf("%d",&p->data);

P a g e | 77

 if(a==NULL)

 a=p;

 else

 prev->link=p;

 prev=p;

 }

 printf("Enter the number of elements to be entered in the
list b:\t");

 scanf("%d",&n);

 b=NULL;

 for(i=1;i<=n;i++)

 {

 p=(node*)malloc(sizeof(node));

 printf("Enter the data for the node:\t");

 scanf("%d",&p->data);

 if(b==NULL)

 b=p;

 else

 prev->link=p;

 prev=p;

 }

 while(1)

 {

P a g e | 78

 printf("Enter any of the given options to do these
operations\n1.Insert\n2.Search\n3.Delete\n4.Reverse\n5.Merge
\n6.Display\nEnter Any other key to exit\n");

 scanf("%d",&option);

 switch(option)

 {

 case 1:

 printf("Enter the list number to do the
operation\n1.a\n2.b\n");

 scanf("%d",&l);

 printf("Enter the data to be inserted:\t");

 scanf("%d",&dat);

 if(l==1)

 {

 insert_sll(a,dat);

 }

 else

 {

 insert_sll(b,dat);

 }

 break;

 case 2:

 printf("Enter the list number to do the
operation\n1.a\n2.b");

P a g e | 79

 scanf("%d",&l);

 printf("Enter the data to search:\t");

 scanf("%d",&dat);

 if(l==1)

 {

 search_sll(a,dat);

 }

 else

 {

 search_sll(b,dat);

 }

 break;

 case 3:

 printf("Enter the list number to do the
operation\n1.a\n2.b");

 scanf("%d",&l);

 printf("Enter the data to delete:\t");

 scanf("%d",&dat);

 if(l==1)

 {

 del_sll(a,dat);

 }

 else

P a g e | 80

 {

 del_sll(b,dat);

 }

 break;

 case 4:

 printf("Enter the list number to do the
operation\n1.a\n2.b");

 scanf("%d",&l);

 if(l==1)

 {

 reverse_sll(a);

 }

 else

 {

 reverse_sll(b);

 }

 break;

 case 5:

 merge_sll(a,b);

 case 6:

 printf("Enter the list number to do the
operation\n1.a\n2.b");

 scanf("%d",l);

P a g e | 81

 if(l==1)

 {

 printf("Displaying a:\n");

 display_sll(a);

 }

 else

 {

 printf("Displaying b:\n");

 display_sll(b);

 }

 }

 }

 }

Output:

*****Singly Linked List*****

Enter any of these keywords to do the operations

Press 1 to do the insertion of a node

Press 2 to search a node

Press 3 to do the deletion of the nodes

Press 4 to do the reverse of the list

P a g e | 82

Press 5 to merge lists

Press 6 to display

1

Enter the data for the node: 23

Node added successfully

Updated list:

1.23

*****Singly Linked List*****

Enter any of these keywords to do the operations

Press 1 to do the insertion of a node

Press 2 to search a node

Press 3 to do the deletion of the nodes

Press 4 to do the reverse of the list

Press 5 to merge lists

Press 6 to display

1

Enter the data for the node: 34

P a g e | 83

Node added successfully

Updated list:

1.23

2.34

*****Singly Linked List*****

Enter any of these keywords to do the operations

Press 1 to do the insertion of a node

Press 2 to search a node

Press 3 to do the deletion of the nodes

Press 4 to do the reverse of the list

Press 5 to merge lists

Press 6 to display

3

Enter the data to be deleted: 2

Node deleted successfully

Updated list:

1.23

P a g e | 84

*****Singly Linked List*****

Enter any of these keywords to do the operations

Press 1 to do the creation of a node

Press 2 to do the display of the node

Press 3 to do the insertion of the nodes

Press 4 to do the deletion of the nodes

Press 5 to do reverse the list

Press 6 to get the maximum of all nodes

Press 7 to get the minimum of all node

Press 8 to make an odd and even list element out of the main
list

9

P a g e | 85

Discussions:

1. We are working with two linked list here so that we can do
the merge operation.

2. Time Complexity:

 For Insert Operation the complexity will be O(n)
because we need to traverse the list to add a node

 For Delete and Search Operation the complexity will
be O(n) because we need to traverse to the desired
location

3. Space Complexity:

 For Insertion and Operation the complexity will be
O(1) because it just requires a single space to get
added

 For Merge Operation the complexity will be O(m+n)
where m is the size of the 1st list and n is the size of
2nd list

P a g e | 86

Assignment No.10 Date:-

Problem Statement:- Implement Doubly linked list. Include
functions Insertion, Deletion, Search of a Number, reverse the
list.

Algorithm:-

Algorithm insert_dll()

Input: A pointer called „start‟ which will point the first node

Output: A doubly inked list with the node added in the desired
location.

Steps:

cur=start

Allocate memory for ptr

If(start=NULL) then //data is going to be inserted in the first
 location

 Scan ptr->data

 ptr->next=NULL

ptr->prev=NULL

Else

 Scan key

 While(cur->data!=key && cur!=NULL) do

 Cur=cur->next

 End while

P a g e | 87

If(cur->data=key) then //data inserted to a desired location

 ptr->next=cur->next

 cur->next->prev=ptr

 ptr->prev=cur

 cur->next=ptr

 Else

 Print “Key not found”

 End If

End If

Stop

Algorithm display_dll()

Input: A Doubly linked list with a pointer pointing the first node
called „start‟.

Output: All the elements present in the list

Steps:

ptr=start

while(ptr->next!=NULL) do

 Print ptr->data

End while

Stop

P a g e | 88

Algorithm del_dll()

Input: „Key‟ is the value to be deleted

Output: A Doubly linked list without the node included the
value „key‟

Steps:

Scan key

Set ptr=start and prev1=NULL

While(ptr!=NULL&&ptr->data!=key) do

 prev1=ptr

 ptr=ptr->start

End while

If(ptr=start) then // if the first node is to be deleted

 Start=ptr->next

End If

If(ptr->data=key) then // deletion at any position

 prev1->next=ptr->next

 deallocate ptr

Else

 Print “Node is not present”

End If

Stop

P a g e | 89

Algorithm reverse_dll()

Input: A Doubly linked list with a starting pointer „start‟

Output: Given list in reverse order

Steps:

Set pre=NULL and cur=start

While(cur!=NULL) // traverse the list

 temp=cur->prev //temp is a temporary pointer for
 swapping

 cur->prev=cur->next

 cur->prev=temp

 pre=cur //update the previous node before moving to the
 next node

 cur=cur->prev //move to the next node of dll

End while

If(pre!=NULL)

 start=pre //update the start to the last node

Stop

Algorithm search_dll()

Input: „key‟ is the valued to be searched

Output: If found in the list then the position of the value will be
shown.

P a g e | 90

Steps:

ptr=start

Set count=0

Scan key

While(ptr->data!=key) do

 count=count+1

 ptr=ptr->next

End while

If(ptr=NULL)

 Print “Key not found”

Else

 Print count

End If

Stop

Source Code:-

// Doubly linked list opertaions

#include<stdio.h>

#include<stdlib.h>

typedef struct node{

 int data;

 struct node *prev;

 struct node *next;

P a g e | 91

}node;

node *start=NULL,*ptr=NULL,*prev1=NULL;

void insert()

{

 int key;

 struct node *cur;

 cur=start;

 ptr=(struct node*)malloc(sizeof(struct node));

 if(start=NULL) // if the list is empty

 {

 printf("\nEnter new value for the node : ");

 scanf("%d",ptr->data);

 ptr->next=ptr->prev=NULL;

 start=prev1=ptr;

 }

 else

 {

 printf("\nEnter the value after which you want to insert
new value : ");

 scanf("%d",&key);

 while(cur->data!=key&&cur!=NULL)

P a g e | 92

 {

 cur=cur->next;

 }

 if(cur->data==key)

 {

 printf("\nEnter value for new node : ");

 scanf("%d",&key);

 ptr->next=cur->next;

 cur->next->prev=ptr;

 ptr->prev=cur;

 cur->next=ptr; // setting the node after the
selected node

 }

 else

 printf("\nKey not found\n");

 }

}

void display()

{

 ptr=start;

 printf("\nThe elements are\n");

 while(ptr->next!=NULL)

 {

P a g e | 93

 printf("%d\t",ptr->data);

 ptr=ptr->next;

 }

}

void del()

{

 int key;ptr=start;prev1=NULL;

 printf("\nEnter a value to delete : ");

 scanf("%d",&key);

 while(ptr!=NULL&&ptr->data!=key)

 {

 prev1=ptr;

 ptr=ptr->next;

 }

 if(ptr==start) // if the first node is to be deleted

 {

 start=ptr->next;

 }

 if(ptr->data==key) // deletion at any position

 {

 prev1->next=ptr->next;

 free(ptr);

P a g e | 94

 }

 else

 printf("\nNode is not present\n");

}

void reverse()

{

 struct node *pre=NULL;

 struct node *cur=start;

 // traverse the list

 while(cur!=NULL)

 {

 // swap next and previous pointers

 struct node* temp=cur->prev;

 cur->prev=cur->next;

 cur->prev=temp;

 // update the previous node before moving to the next
node

 pre=cur;

 // move to the next node of doubly linked list

 cur=cur->prev;

 }

 // update the start to the last node

P a g e | 95

 if(pre!=NULL){

 start=pre;

 }

}

int search()

{

 ptr=start;

 int count=0,k;

 printf("\nEnter a value to search : ");

 scanf("%d",&k);

 while(ptr->data!=k)

 {

 ++count;

 ptr=ptr->next;

 }

 if(ptr==NULL)

 {

 printf("\nThe given data is not present in the list\n");

 }

 else

 {

 printf("\nThe given data is present at %d
location",count);

P a g e | 96

 }

}

int main()

{

 int prompt;

 printf("******Doubly Linked List******\n\n");

 while(1)

 {

 printf("\nEnter the options for the
operations\n1.Insert\n2.Delete\n3.Search\n4.Reverse\n5.Displa
y\nEnter any other key to exit\n");

 scanf("%d",&prompt);

 switch(prompt)

 {

 case 1:

 insert();

 case 2:

 del();

 case 3:

 search();

 case 4:

 reverse();

 case 5:

P a g e | 97

 display();

 default:

 exit(1);

 }

 }

}

Output:-

******Doubly Linked List******

Enter the options for the operations

1.Insert

2.Delete

3.Search

4.Reverse

5.Display

Enter any other key to exit

Enter new value for the node : 21

Enter the options for the operations

1.Insert

2.Delete

P a g e | 98

3.Search

4.Reverse

5.Display

Enter any other key to exit

2

Enter a value to delete : 31

Node is not present

Enter the options for the operations

1.Insert

2.Delete

3.Search

4.Reverse

5.Display

Enter any other key to exit

9

P a g e | 99

Discussions:-

 Doubly linked list is used over circular or singly
linked list because both way traversal is possible in
Doubly linked list

 Reversal of the list is much more easier
 Doubly linked uses too much pointer variable that‟s

why it is difficult to handle
 It requires more memory and time for the operations

like insertion, deletion etc.

P a g e | 100

Assignment No.11 Date:-

Problem Statement:- Implement Circular Linked List. Include
functions Insertion, Deletion, Search of a number, reverse the
list.

Algorithm:-

Algorithm create_cll()

Input: „head‟ is a null pointer and „n‟ is the number of node

required

Output: „head‟ will point the first node of the list

Steps:

If(n>=1) then

 Allocate memory for „head‟ //allocating the first memory

Scan data

head->data=data

head->next=NULL

prevnode=head

End If

For(i=2 to n) do//allocating the memory for the rest of the list

 Allocate memory for „Newnode‟

 Scan data

 Newnode->data=data

 Newnode->next=NULL

 prevnode->next=Newnode

P a g e | 101

 prevnode=Newnode

End For

prevnode->next=head //last node is pointing to the head

Stop

Algorithm display_cll()

Input: „head‟ pointer which points to the first node

Output: All the elements of the list are shown

Steps:

If(head=NULL)

 Print “List is Empty”

Else

Current=head

While(Current->next!=head) do

 Print Current->data

 Current=Current->next

End while

Stop

Algorithm insert_begin()

Input: „data‟ is the value to be inserted

Output: A circular linked list with the added node

P a g e | 102

Steps:

If(head=NULL)

 Print “List is Empty”

Else

 Allocate new memory for “newnode”

 newnode->data=data

 newnode->next=head

 current=head

 while(current->next!=head)

 current=current->next

 End while

 current->next=newnode

 head=newnode

End If

Stop

Algorithm insertAtN()

Input: „data‟ is the value to be inserted and „position‟ the place

where the data will be inserted

Output: A circular linked list with the added node

Steps:

If(head=NULL)

 Print “List is Empty”

P a g e | 103

Else

 If(position=1)

 insert_begin(data)

 Else

 Allocate memory for „newnode‟

 newnode->data=data

 current=head

 for(i=2 to position-1) do //Traverse to n-1 node

 current=current->next

 End for

 newnode->next=current->next //Links new node with
 node ahead of it and previous to it

 current->next=newnode

 End If

End If

Stop

Algorithm delete()

Input: „key‟ is the data to be deleted

Output: If found then A circular linked list without the node
containing „key‟

P a g e | 104

Steps:

While(curr->data==key) do

 If(curr->next==head)

 Print “Given node is not found”

 End if

 prev=curr

 curr=curr->next

End while

If(curr->next==head) // Check if node is only node

 head=NULL

 deallocate curr

End if

Stop

Algorithm search_cll()

Input: „key‟ is the value to be searched

Output: position of the value „key‟ in the list

Steps:

Set index=0

current=head

P a g e | 105

while(current!=head) do // Iterate till end of list

 index=index+1

 current=current->next

End while

Print index

Stop

Algorithm reverse()

Input: A Circular linked list with „head‟ pointer pointing to the

first node

Output: The given list in reverse order

Steps:

If(head=NULL)

 Print “Cannot reverse an empty list”

End If

last=head // Head is going to be our last node after reversing
 list

prev=head

cur=head->next

head=head->next

P a g e | 106

while(head!=last) do // Iterate till you reach the initial node in
 circular list

 head=head->next

 cur->next=prev

 prev=cur

 cur=head

End while

Cur->next=prev

Head=prev // Make last node as head

Stop

Source Code:-

#include<stdio.h>

#include<stdlib.h>

struct node {

 int data;

 struct node * next;

}*head=NULL;

void createList(int n)

{

 int i, data;

 struct node *prevNode, *newNode;

 if(n >= 1)

P a g e | 107

 {

 //Creates and links the head node

 head = (struct node *)malloc(sizeof(struct node));

 printf("enter data of 1 node: ");

 scanf("%d", &data);

 head->data = data;

 head->next = NULL;

 prevNode = head;

 //Creates and links rest of the n-1 nodes

 for(i=2; i<=n; i++)

 {

 newNode = (struct node *)malloc(sizeof(struct node));

 printf("enter data of %d node: ", i);

P a g e | 108

 scanf("%d", &data);

 newNode->data = data;

 newNode->next = NULL;

 //Links the previous node with newly created node

 prevNode->next = newNode;

 //Moves the previous node ahead

 prevNode = newNode;

 }

 //Links the last node with first node

 prevNode->next = head;

 printf("\ncircular linked list created successfully\n");

 }

}

void displayList()

{

 struct node *current;

 int n = 1;

P a g e | 109

 if(head == NULL)

 {

 printf("list is empty.\n");

 }

 else

 {

 current = head;

 printf("data in the list:\n");

 do {

 printf("Data %d = %d\n", n, current->data);

 current = current->next;

 n++;

 }while(current != head);

 }

}

void insertAtBeginning(int data)

{

 struct node *newNode, *current;

 if(head == NULL)

P a g e | 110

 {

 printf("list is empty.\n");

 }

 else

 {

 //Creates new node, assign data and links it to head

 newNode = (struct node *)malloc(sizeof(struct node));

 newNode->data = data;

 newNode->next = head;

 //Traverses to last node and links last node

 //with first node which is new node

 current = head;

 while(current->next != head)

 {

 current = current->next;

 }

 current->next = newNode;

P a g e | 111

 //Makes new node as head node

 head = newNode;

 printf("node inserted successfully\n");

 }

}

// Inserts a new node at any position in the list

// @data Data of the new node

//@position Position where to insert new node

void insertAtN(int data, int position)

{

 struct node *newNode, *current;

 int i;

 if(head == NULL)

 {

 printf("list is empty.\n");

P a g e | 112

 }

 else if(position == 1)

 {

 insertAtBeginning(data);

 }

 else

 {

 //Creates new node and assign data to it

 newNode = (struct node *)malloc(sizeof(struct node));

 newNode->data = data;

 //Traverse to n-1 node

 current = head;

 for(i=2; i<=position-1; i++)

 {

 current = current->next;

 }

P a g e | 113

 // Links new node with node ahead of it and previous to it

 newNode->next = current->next;

 current->next = newNode;

 printf("node inserted successfully.\n");

 }

}

void deleteNode(struct node *head, int key)

{

 if (head == NULL)

 return;

 // Find the required node

 struct node *curr = head, *prev;

 while (curr->data != key)

 {

 if (curr->next == head)

 {

 printf("\nGiven node is not found in the list!!!");

 break;

 }

P a g e | 114

 prev = curr;

 curr = curr -> next;

 }

 // Check if node is only node

 if (curr->next == head)

 {

 head = NULL;

 free(curr);

 return;

 }

}

int search(struct node *head, int key)

{

 int index = 0;

 struct node *current = head;

 // Iterate till end of list

 do

 {

 // Nothing to look into

 if (current == NULL)

P a g e | 115

 return;

 if (current->data == key)

 return index;

 current = current->next;

 index++;

 } while (current != head);

 // Element not found in list

 printf("\nElement not found\n");

}

void reverseList(struct node *head)

{

 // Temporary helper variables

 struct node *prev, *cur, *next, *last;

 // Cannot reverse empty list

 if (head == NULL)

 {

 printf("Cannot reverse empty list.\n");

 return;

P a g e | 116

 }

 last = head;

 prev = head;

 cur = (head)->next;

 head = (head)->next;

 // Iterate till you reach the initial node in circular list

 while (head != last)

 {

 head = (head)->next;

 cur->next = prev;

 prev = cur;

 cur = head;

 }

 cur->next = prev;

 head = prev; // Make last node as head

P a g e | 117

}

int main()

{

 int prompt,no,data,pos;

 printf("////Circular Linked List\\\\ \n\n");

 while(1)

 {

 printf("Enter any option to do the
operation\n1.Create\n2.Insert at beginning\n3.Insert at given
position\n4.Delete\n5.Search for an element\n6.Reverse the
list\n7.Display\nEnter any other key to exit\n");

 scanf("%d",&prompt);

 switch(prompt)

 {

 case 1:

 printf("\nEnter the no. of nodes required: ");

 scanf("%d",&no);

 createList(no);

 break;

 case 2:

 printf("\nEnter the data to be inserted : ");

 scanf("%d",&data);

 insertAtBeginning(data);

P a g e | 118

 break;

 case 3:

 printf("\nEnter the position and data for
insertion : ");

 scanf("%d",&pos);

 printf("\t");

 scanf("%d",&data);

 insertAtN(data,pos);

 break;

 case 4:

 printf("\nEnter the data to be deleted : ");

 scanf("%d",&data);

 deleteNode(head,data);

 break;

 case 5:

 printf("\nEnter the number to be searched :
");

 scanf("%d",&data);

 search(head,data);

 break;

 case 6:

 reverseList(head);

 displayList();

P a g e | 119

 break;

 case 7:

 displayList();

 break;

 default:

 exit(1);

 }

 }

 return 0;

}

Output:-

////Circular Linked List\\\\

Enter any option to do the operation

1.Create

2.Insert at beginning

3.Insert at given position

4.Delete

5.Search for an element

6.Reverse the list

7.Display

Enter any other key to exit

P a g e | 120

1

Enter the no. of nodes required: 5

enter data of 1 node: 1

enter data of 2 node: 2

enter data of 3 node: 3

enter data of 4 node: 4

enter data of 5 node: 5

circular linked list created successfully

Enter any option to do the operation

1.Create

2.Insert at beginning

3.Insert at given position

4.Delete

5.Search for an element

6.Reverse the list

7.Display

Enter any other key to exit

2

Enter the data to be inserted : 0

P a g e | 121

node inserted successfully

Enter any option to do the operation

1.Create

2.Insert at beginning

3.Insert at given position

4.Delete

5.Search for an element

6.Reverse the list

7.Display

Enter any other key to exit

7

data in the list:

Data 1 = 0

Data 2 = 1

Data 3 = 2

Data 4 = 3

Data 5 = 4

Data 6 = 5

Enter any option to do the operation

1.Create

2.Insert at beginning

3.Insert at given position

P a g e | 122

4.Delete

5.Search for an element

6.Reverse the list

7.Display

Enter any other key to exit

6

data in the list:

Data 1 = 0

Data 2 = 5

Data 3 = 4

Data 4 = 3

Data 5 = 2

Data 6 = 1

Enter any option to do the operation

1.Create

2.Insert at beginning

3.Insert at given position

4.Delete

5.Search for an element

6.Reverse the list

7.Display

Enter any other key to exit

P a g e | 123

7

data in the list:

Data 1 = 0

Data 2 = 5

Data 3 = 4

Data 4 = 3

Data 5 = 2

Data 6 = 1

Enter any option to do the operation

1.Create

2.Insert at beginning

3.Insert at given position

4.Delete

5.Search for an element

6.Reverse the list

7.Display

Enter any other key to exit

0

Discussions:-

 In circular linked list the immediate left node can be
accesed by traversing the list

 In circular linked list there are no null links hence, program
is less ambiguous.

P a g e | 124

Assignment No.12 Date:-

Problem Statement:- Write a program to scan a polynomial
using linked list and add two polynomials

Algorithm:-

Algorithm create_poly()

Input: „n‟ is the exponent and „c‟ is the coefficient of a term

Output: A list which will have all the corresponding terms of the
polynomial

Steps:

While(n!=-1) do

 If(start=NULL) then

 Allocate new memory for „newnode‟

 newnode->num=n

 newnode->coeff=c

 newnode->next=NULL

 start=newnode

 Else

 ptr=start

 while(ptr->next!=NULL) do

 ptr=ptr->next

 newnode->num=n

 newnode->coeff=c

 newnode->next=NULL

P a g e | 125

 ptr->next=newnode

 End while

 End If

End While

Stop

Algorithm display_poly()

Input: „start‟ pointer of the polynomial

Output: All the terms present in the polynomial

Steps:

ptr=start

While(ptr!=NULL) do

 Print ptr->num

 Print ptr->coeff

 Ptr=ptr->next

End while

Stop

Algorithm add_poly()

Inputs: „start1‟is the pointer to the 1
st polynomial and „start2‟ is

the pointer to the 2nd polynomial

Output: The sum of two polynomials

Steps:

Set ptr1=start1

Set ptr2=start2

P a g e | 126

While(ptr1!=NULL&&ptr2!=NULL) do

 If(ptr1->coeff=ptr->coeff) then

 sum_num=ptr1->num+ptr2->num

 start3=add_node(start,sum_num,ptr->coeff)

 ptr1=ptr1->next

 ptr2=ptr2->next

 Else

If(ptr1->coeff>ptr2->coeff) then

 start3=add_node(start3,ptr1->num,ptr1->coeff)

 ptr1=ptr->next

 Else

If(ptr1->coeff<ptr2->coeff)

 start3=(start3,ptr2->num,ptr2->coeff)

 ptr2=ptr2->next

 End If

 End If

 End If

End while

If(ptr1=NULL) then

 While(ptr2!=NULL) do

 start3=add_node(start3,ptr1->num,ptr1->coeff)

 ptr2=ptr2->next

P a g e | 127

 End While

End If

If(ptr2=NULL)

 While(ptr1!=NULL)

 start3=add_node(start3,ptr->num,ptr1->coeff)

 ptr1=ptr1->next

 End while

End If

Stop

In add_poly() there is a procedure called add_node(), the
steps of this procedure is as follows

Procedure add_poly()

Steps:

If(start=NULL)

 Allocate new memory for „newnode‟

 newnode->num=n

 newnode->coeff=c

 newnode->next=NULL

 start=newnode

Else

 ptr=start

 while(ptr->next!=NULL) do

 ptr=ptr->next

P a g e | 128

 newnode->num=n

 newnode->coeff=c

 newnode->next=NULL

 ptr->next=newnode

 End while

End If

Stop

Source Code:-

#include <stdio.h>

#include <conio.h>

#include <malloc.h>

struct node

{

int num;

int coeff;

struct node *next;

};

struct node *start1 = NULL;

struct node *start2 = NULL;

struct node *start3 = NULL;

struct node *create_poly(struct node *);

P a g e | 129

struct node *display_poly(struct node *);

struct node *add_poly(struct node *, struct node *, struct node
*);

struct node *add_poly(struct node *, struct node *, struct node
*);

int main()

{

int option;

do

{

printf("\n******* MAIN MENU *******");

printf("\n 1. Enter the first polynomial");

printf("\n 2. Display the first polynomial");

printf("\n 3. Enter the second polynomial");

printf("\n 4. Display the second polynomial");

printf("\n 5. Add the polynomials");

printf("\n 6. Display the result");

printf("\n 7.Exit");

printf("\n\n Enter your option : ");

scanf("%d", &option);

switch(option)

{

P a g e | 130

case 1: start1 = create_poly(start1);

break;

case 2: start1 = display_poly(start1);

break;

case 3: start2 = create_poly(start2);

break;

case 4: start2 = display_poly(start2);

break;

case 5: start3 = add_poly(start1, start2, start3);

break;

case 6: start3 = display_poly(start3);

break;

}

}while(option!=7);

return 0;

}

struct node *create_poly(struct node *start)

{

struct node *new_node, *ptr;

int n, c;

printf("\n Enter the number : ");

scanf("%d", &n);

P a g e | 131

printf("\t Enter its coefficient : ");

scanf("%d", &c);

while(n != -1)

{

if(start==NULL)

{

new_node = (struct node *)malloc(sizeof(struct node));

new_node -> num = n;

new_node -> coeff = c;

new_node -> next = NULL;

start = new_node;

}

else

{

ptr = start;

while(ptr -> next != NULL)

ptr = ptr -> next;

new_node = (struct node *)malloc(sizeof(struct node));

new_node -> num = n;

new_node -> coeff = c;

new_node -> next = NULL;

ptr -> next = new_node;

P a g e | 132

}

printf("\n Enter the number : ");

scanf("%d", &n);

if(n == -1)

break;

printf("\t Enter its coefficient : ");

scanf("%d", &c);

}

return start;

}

struct node *add_node(struct node *start, int n, int c)

{

struct node *ptr, *new_node;

if(start == NULL)

{

new_node = (struct node *)malloc(sizeof(struct node));

new_node -> num = n;

new_node -> coeff = c;

new_node -> next = NULL;

start = new_node;

}

else

P a g e | 133

{

ptr = start;

while(ptr -> next != NULL)

ptr = ptr -> next;

new_node = (struct node *)malloc(sizeof(struct node));

new_node -> num = n;

new_node -> coeff = c;

new_node -> next = NULL;

ptr -> next = new_node;

}

return start;

}

struct node *display_poly(struct node *start)

{

struct node *ptr;

ptr = start;

while(ptr != NULL)

{

printf("\n%d x %d\t", ptr -> coeff, ptr -> num);

ptr = ptr -> next;

}

return start;

P a g e | 134

}

struct node *add_poly(struct node *start1, struct node *start2,
struct node *start3)

{

struct node *ptr1, *ptr2;

int sum_num, c;

ptr1 = start1, ptr2 = start2;

while(ptr1 != NULL && ptr2 != NULL)

{

if(ptr1 -> num == ptr2 -> num)

{

sum_num = ptr1 -> coeff + ptr2 -> coeff;

start3 = add_node(start3, ptr1->num, sum_num);

ptr1 = ptr1 -> next;

ptr2 = ptr2 -> next;

}

else if(ptr1 -> num > ptr2 -> num)

{

start3 = add_node(start3, ptr1 -> num, ptr1 -> coeff);

ptr1 = ptr1 -> next;

}

else if(ptr1 -> num < ptr2 -> num)

{

P a g e | 135

start3 = add_node(start3, ptr2 -> num, ptr2 -> coeff);

ptr2 = ptr2 -> next;

}

}

if(ptr1 == NULL)

{

while(ptr2 != NULL)

{

start3 = add_node(start3, ptr2 -> num, ptr2 -> coeff);

ptr2 = ptr2 -> next;

}

}

if(ptr2 == NULL)

{

while(ptr1 != NULL)

{

start3 = add_node(start3, ptr1 -> num, ptr1 -> coeff);

ptr1 = ptr1 -> next;

}

}

return start3;

}

P a g e | 136

Output:-

******* MAIN MENU *******

 1. Enter the first polynomial

 2. Display the first polynomial

 3. Enter the second polynomial

 4. Display the second polynomial

 5. Add the polynomials

 6. Display the result

 7.Exit

 Enter your option : 1

 Enter the number : 1

 Enter its coefficient : 5

 Enter the number : 2

 Enter its coefficient : 6

 Enter the number : -1

******* MAIN MENU *******

P a g e | 137

 1. Enter the first polynomial

 2. Display the first polynomial

 3. Enter the second polynomial

 4. Display the second polynomial

 5. Add the polynomials

 6. Display the result

 7.Exit

 Enter your option : 2

5 x 1

6 x 2

******* MAIN MENU *******

 1. Enter the first polynomial

 2. Display the first polynomial

 3. Enter the second polynomial

 4. Display the second polynomial

 5. Add the polynomials

 6. Display the result

 7.Exit

 Enter your option : 3

P a g e | 138

 Enter the number : 1

 Enter its coefficient : 6

 Enter the number : 2

 Enter its coefficient : 7

 Enter the number : -1

******* MAIN MENU *******

 1. Enter the first polynomial

 2. Display the first polynomial

 3. Enter the second polynomial

 4. Display the second polynomial

 5. Add the polynomials

 6. Display the result

 7.Exit

 Enter your option : 4

6 x 1

7 x 2

P a g e | 139

******* MAIN MENU *******

 1. Enter the first polynomial

 2. Display the first polynomial

 3. Enter the second polynomial

 4. Display the second polynomial

 5. Add the polynomials

 6. Display the result

 7.Exit

 Enter your option : 5

******* MAIN MENU *******

 1. Enter the first polynomial

 2. Display the first polynomial

 3. Enter the second polynomial

 4. Display the second polynomial

 5. Add the polynomials

 6. Display the result

 7.Exit

 Enter your option : 6

P a g e | 140

11 x 1

13 x 2

******* MAIN MENU *******

 1. Enter the first polynomial

 2. Display the first polynomial

 3. Enter the second polynomial

 4. Display the second polynomial

 5. Add the polynomials

 6. Display the result

 7.Exit

 Enter your option : 7

Discussions:-

 In this representation each node has three part one part
contains the exponent number, one part contains the
coefficents and one part contains the link to another term

 A polynomial can be represented in an array but for more
dynamic approach linked list is widely used for it‟s

application

P a g e | 141

Assignment No.13 Date:-

Problem Statement:- Perform Stack operations using Linked
List implementation.

Algorithm:-

Algorithm for Push:

Algorithm push()

Input: Integer data „dat‟ to be pushed into the stack

Output: Stack with the pushed value

Steps:

Set top=NULL //It is a pointer for the stack

Allocate memory for temp

If(temp!=NULL) then

 Print “Stack Overflow”

Else

 (temp->data)=dat

 (temp->link)=top

 top=temp

End If

Stop

Algorithm for pop:

Algorithm pop()

Output: The data which is pushed last in the stack

P a g e | 142

Steps:

If(top=NULL) then

 Print “Stack Underflow”

Else

 Set p=top // p is the pointer to hold the position of pop

 k=(top->data) //k holds the data which is to be popped

 top=(top->link)

 deallocate p

 Print k

End If

Stop

Source Code:

// linked impelementation of stack

#include<stdio.h>

#include<stdlib.h>

typedef struct node{

 int data;

 struct node *link;

}stack; //declaring a new stack data type

stack *top=NULL;

stack *create_node() //create_node() is for allocating memory
for the stack

{

P a g e | 143

 stack *k;

 k=(stack*)malloc(sizeof(stack));

 return k;

}

void push(int x)

{

 stack *temp=create_node();

 if(temp==NULL)

 {

 printf("Stack Overflow\nPush Failed\n");

 return;

 }

 temp->data=x;

 temp->link=top; //pusing the data into the stack

 top=temp;

}

int pop()

{

 if(top==NULL)

 {

 printf("Stack Underflow\nPop Failed\n");

 }

P a g e | 144

 int k;

 stack *p=top;

 k=top->data; //k holds the popped value

 top=top->link;

 free(p); //deallocating the popped node

 return k;

}

int main()

{

 int prompt,dat;

 while(1)

 {

 printf("\nEnter the choice of opertaion\n1.Push\n2.Pop\n");

 scanf("%d",&prompt);

 switch(prompt)

 {

 case 1:

 {

 printf("Enter the data to push into the stack\t");

 scanf("%d",&dat);

 push(dat);

 printf("\n%d is pushed to the stack",dat);

P a g e | 145

 break;

 }

 case 2:

 {

 printf("\nPopped Element is %d",pop());

 break;

 }

 }

 }

 return 0;

}

Output:-

Enter the choice of opertaion

1.Push

2.Pop

1

Enter the data to push into the stack 23

23 is pushed to the stack

Enter the choice of opertaion

1.Push

2.Pop

P a g e | 146

1

Enter the data to push into the stack 23

23 is pushed to the stack

Enter the choice of opertaion

1.Push

2.Pop

2

Popped Element is 23

Enter the choice of opertaion

1.Push

2.Pop

1

Enter the data to push into the stack 33

33 is pushed to the stack

Enter the choice of opertaion

1.Push

2.Pop

2

P a g e | 147

Popped Element is 33

Enter the choice of opertaion

1.Push

2.Pop

2

Popped Element is 23

Enter the choice of opertaion

1.Push

2.Pop

2

Stack Underflow

Pop Failed

Discussions:

Stack is a linear data structure which follows a particular order
in which the operations are performed. Stack follows a LIFO
(Last In First Out) order of operations. Stack can be
implemented with arrays and linked lists both and complexity of
push() and pop() operations are always O(1) because it doesn‟t
require any traversals to perform the operations.

P a g e | 148

Assignment No.14 Date;-

Problem Statement:- Perform Stack operations using array
implementation.

Algorithm:-

Algorithm for Push:

Algorithm Push()

Input: An array „stack‟, a variable „top‟ which points to the
indeces and „ITEM‟ is value to be inserted

Output: An array with the pushed(inserted) value

Steps:

If(top=MAXSIZE) then

 Print “Stack Overflow” //stack is full

 Exit

Else

 top=top+1 //top is increased

 stack[top]=ITEM

End If

Stop

Algorithm for Pop:

Algorithm Pop()

Output: the value at the „top‟ position of array

P a g e | 149

Steps:

If(top=0)

 Print “Stack Underflow” //stack is empty

 Exit

Else

 x=stack[top]

 top=top-1 //top is decreased

End If

Print x //popped value is printed

Stop

Source Code:-

// stack using array

#include<stdio.h>

#include<stdlib.h>

#define MAX_SIZE 50 // maxsize of array is determined

int stack[MAX_SIZE];

int top=-1;

void push(int data)

{

 if(top==MAX_SIZE-1) //top==MAX_SIZE-1 means stack is
maxed out hence push not possible

P a g e | 150

 {

 printf("Stack Overflow\nPush Failed");

 return;

 }

 stack[++top]=data; //first top is incremented then the data
is inserted to stack[top] position

}

int pop()

{

 if(top==-1) //top==-1 means stack is empty pop is not
possible

 {

 printf("Stack Underflow\nPop Failed");

 return;

 }

 return stack[top--]; // here first stack[top element is
returned then top is decremented

}

int main()

{

 int prompt,dat;

 while(1)

 {

P a g e | 151

 printf("\nEnter the choice of
opertaion\n1.Push\n2.Pop\n**Press any other key to exit**\n");

 scanf("%d",&prompt);

 switch(prompt)

 {

 case 1:

 {

 printf("Enter the data to push into the stack\t");

 scanf("%d",&dat);

 push(dat);

 printf("\n%d is pushed to the stack",dat);

 break;

 }

 case 2:

 {

 printf("\nPopped Element is %d",pop());

 break;

 }

 default:

 exit(1);

 }

 }

}

P a g e | 152

Output:-

Enter the choice of opertaion

1.Push

2.Pop

Press any other key to exit

1

Enter the data to push into the stack 2

2 is pushed to the stack

Enter the choice of opertaion

1.Push

2.Pop

Press any other key to exit

1

Enter the data to push into the stack 3

3 is pushed to the stack

Enter the choice of opertaion

1.Push

2.Pop

Press any other key to exit

1

P a g e | 153

Enter the data to push into the stack 4

4 is pushed to the stack

Enter the choice of opertaion

1.Push

2.Pop

Press any other key to exit

1

Enter the data to push into the stack 5

5 is pushed to the stack

Enter the choice of opertaion

1.Push

2.Pop

Press any other key to exit

2

Popped Element is 5

Enter the choice of opertaion

1.Push

2.Pop

Press any other key to exit

P a g e | 154

2

Popped Element is 4

Enter the choice of opertaion

1.Push

2.Pop

Press any other key to exit

1

Enter the data to push into the stack 6

6 is pushed to the stack

Enter the choice of opertaion

1.Push

2.Pop

Press any other key to exit

2

Popped Element is 6

Enter the choice of opertaion

1.Push

2.Pop

Press any other key to exit

P a g e | 155

2

Popped Element is 3

Enter the choice of opertaion

1.Push

2.Pop

Press any other key to exit

2

Popped Element is 2

Enter the choice of opertaion

1.Push

2.Pop

Press any other key to exit

2

Stack Underflow

Pop Failed

Discussions:-

 Stack is a Last-In-First-Out type of data where the last
inserted data is extracted first

 Here Push and Pop operation has a time complexity of
O(1)

P a g e | 156

Assignment No.15 Date:-

Problem Statement:- Perform Queue operations using
circular array implementation

Algorithm:-

Algorithm for enQueue:

Input: A queue „ITEM‟ with „front‟ and „rear‟ two variables which

the location and element which have the value to be inserted.

Output: A queue with the inserted element

Steps:

If((front=rear+1) or (front=0 and rear=MAXSIZE)) then
//MAXSIZE is the maximum size of the queue

 Print “Queue Overflow” //Queue is full

 Exit

Else

 rear=(rear+1)%MAXSIZE //rear is increased

End If

ITEM[rear]=element

Stop

P a g e | 157

Algorithm for deQueue:

Output: The value of the element in ‟front‟ position

Steps:

If(front=0)

 Print “Queue Underflow”

 Exit

Else

 y=ITEM[front]

 front=(front+1)%MAXSIZE

End If

Print y

Stop

Source Code:-

#include <stdio.h>

#define MAXSIZE 5

int items[MAXSIZE];

int front = -1, rear =-1; //initialised to -1

int isFull()

P a g e | 158

{

if((front == rear + 1) || (front == 0 && rear == SIZE-1))
 return 1;

 return 0;

}

int isEmpty()

{

 if(front == -1) return 1;

 return 0;

}

void enQueue(int element)

{

 if(isFull()) printf("\n Queue is full!! \n");

 else

 {

 if(front == -1) front = 0;

 rear = (rear + 1) % SIZE;

 items[rear] = element;

 printf("\n Inserted -> %d", element);

 }

}

P a g e | 159

int deQueue()

{

 int element;

 if(isEmpty()) {

 printf("\n Queue is empty !! \n");

 return(-1);

 } else {

 element = items[front];

 if (front == rear){

 front = -1;

 rear = -1;

 } /* Q has only one element, so we reset the queue after
dequeing it. ? */

 else {

 front = (front + 1) % SIZE;

 }

 printf("\n Deleted element -> %d \n", element);

 return(element);

 }

}

P a g e | 160

int main(){

 int prompt,dat;

 while(1)

 {

 printf("\nEnter the choice of
opertaion\n1.Insert\n2.Delete\n**Press any other key to
exit**\n");

 scanf("%d",&prompt);

 switch(prompt)

 {

 case 1:

 {

 printf("Enter the data to insert in queue\t");

 scanf("%d",&dat);

 enQueue(dat);

 printf("\n%d is entered in the queue",dat);

 break;

 }

 case 2:

 {

 printf("\nDeleted Element is %d",deQueue());

 break;

 }

P a g e | 161

 default:

 exit(1);

 } } }

Output:-

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

1

Enter the data to insert in queue 1

 Inserted -> 1

1 is entered in the queue

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

1

Enter the data to insert in queue 2

 Inserted -> 2

2 is entered in the queue

P a g e | 162

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

1

Enter the data to insert in queue 3

 Inserted -> 3

3 is entered in the queue

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

1

Enter the data to insert in queue 4

 Inserted -> 4

4 is entered in the queue

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

P a g e | 163

1

Enter the data to insert in queue 5

 Inserted -> 5

5 is entered in the queue

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

1

Enter the data to insert in queue 6

 Queue is full!!

6 is entered in the queue

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

2

 Deleted element -> 1

P a g e | 164

Deleted Element is 1

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

2

 Deleted element -> 2

Deleted Element is 2

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

2

 Deleted element -> 3

Deleted Element is 3

Enter the choice of opertaion

1.Insert

P a g e | 165

2.Delete

Press any other key to exit

2

 Deleted element -> 4

Deleted Element is 4

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

2

 Deleted element -> 5

Deleted Element is 5

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

2

Queue is empty !!

P a g e | 166

Discussions:-

 Queue is a data type which operates on First-In-First-Out
System

 In a Circular Queue the array is treated circularly so that
the remaining memory can be used

 As it is considered circular hence the terminating
conditions are slightly different from a normal queue data
structure.

P a g e | 167

Assignment No.16 Date:-

Problem Statement:- Perform Queue operations using Array
and Linked List implementation.

Algorithm:-

Algorithms for Array:

Algorithm enQueue_arr()

Input: An array „Queue‟ with variables „front‟ and „rear‟ pointing

the position and „ITEM‟ is the data to be inserted

Output: Array with the inserted element

Steps:

If(rear=MAXSIZE) then //MAXSIZE is the maximum size of the
 list

 Print “Queue Overflow” //Queue is full

 Exit

Else

If(front=0)

 front=1 //front is initialised to 1 for deQueue

End If

End If

rear=rear+1 //rear is increased

Queue[rear]=ITEM //ITEM is placed

Stop

P a g e | 168

Algorithm deQueue_arr()

Output: The item at the „front‟ position of the list

Steps:

If(front=0)

 Print “Queue Underflow” //Queue is empty

 Exit

Else

 If(front=rear) //only one item is remaining in the list

 front=0

 rear=0 //reset to initial position

 End If

End If

h=Queue[front]

front=front+1

Print h

Stop

Algorithm for Linked List:

Algorithm enQueue_ll()

Input: A linked list called „Queue‟ with „front‟ and „rear‟ two

pointer initialised to NULL and the „ITEM‟ is the data to insert

Output: A linked list with the inserted data

P a g e | 169

Steps:

Allocate memory for „temp‟

If(temp=NULL) then

 Print “Queue Overflow” //Queue is full

 Exit

End If

temp->data=ITEM //putting the ITEM into the data part of the
 node

temp->link=NULL

If(front=NULL)

 front=temp

 rear=temp

Else

 rear->link=temp

 rear=rear->link

End If

Stop

Algorithm deQueue_ll()

Output: The item where „front‟ is positioned

Steps:

If(front=NULL) then //if frony is not initialised yet

 Print “Queue Underflow” //Queue is empty

 Exit

P a g e | 170

End If

h=front->data

If(front=rear) then //only one item left

 front=0

 rear=0

End If

front=front->link

Print h

Stop

Source Code:-

Source Code for Array:

// queue using array

#include<stdio.h>

#include<stdlib.h>

#define MAX_SIZE 50 // maxsize of array is determined

int queue[MAX_SIZE];

int front=-1,rear=-1;

void EnQueue(int data)

{

 if(rear==MAX_SIZE-1) //if rear is at the max position
execution will be failed

 {

P a g e | 171

 printf("Queue Overflow\nEnqueue operation
failed\n");

 }

 if(rear==-1) //if rear and front both are not initialised then
both them will be incremented for the first time

 {

 ++front;

 }

 queue[++rear]=data; //data is entered in the queue

}

int DeQueue()

{

 if(front==-1) //if front is -1 then there's no value to be
deleted

 {

 printf("Queue Underflow\nDequeue operation
failed\n");

 }

 int val=queue[front]; //deleted element is stored in val

 if(front==rear)

 {

 front=rear=-1; //if fornt reaches to rear that means all
of the elements are deleted hence they're started again

 }

P a g e | 172

 else

 {

 ++front; //if they are not at the same place then front
will be incremented

 }

 return val; //deleted value is returned

}

int main()

{

 int prompt,dat;

 while(1)

 {

 printf("\nEnter the choice of
opertaion\n1.Insert\n2.Delete\n**Press any other key to
exit**\n");

 scanf("%d",&prompt);

 switch(prompt)

 {

 case 1:

 {

 printf("Enter the data to insert in queue\t");

 scanf("%d",&dat);

 EnQueue(dat);

P a g e | 173

 printf("\n%d is entered in the queue",dat);

 break;

 }

 case 2:

 {

 printf("\nDeleted Element is %d",DeQueue());

 break;

 }

 default:

 exit(1);

 }

 }

}

Source Code for Linked List:

//queue using linked list

#include<stdio.h>

#include<stdlib.h>

typedef struct record{

 int data;

 struct record *link;

}queue;

queue *front=NULL,*rear=NULL;

P a g e | 174

queue *create()

{

 queue *p;

 p=(queue*)malloc(sizeof(queue));

 return p;

}

void EnQueue(int x)

{

 queue *temp=create();

 if(temp==NULL) //if temp is not allocated then enQueue is
not possible

 {

 printf("Queue Overflow\nEnqueue operation
failed\n");

 return;

 }

 temp->data=x;

 temp->link=NULL;

 if(rear==NULL) //If rear is not yet initialised then initialise
both front and rear

 {

 front=temp;

 rear=temp;

P a g e | 175

 }

 else

 {

 rear->link=temp;

 rear=rear->link; //sending rear to the next node

 }

}

int DeQueue()

{

 if(front==NULL) //if front is NULL then queue is empty

 {

 printf("Queue Underflow\nDequeue operation
failed\n");

 return;

 }

 int val=front->data; //data part is extracted

 if(front==rear) //if last element has been extracted then
front and rear will be set beck to initial stage

 {

 front=NULL;rear=NULL;

 }

 else

 {

P a g e | 176

 front=front->link; //front is pointed to the next node

 }

 return val;

}

int main()

{

 int prompt,dat;

 while(1)

 {

 printf("\nEnter the choice of
opertaion\n1.Insert\n2.Delete\n**Press any other key to
exit**\n");

 scanf("%d",&prompt);

 switch(prompt)

 {

 case 1:

 {

 printf("Enter the data to insert in queue\t");

 scanf("%d",&dat);

 EnQueue(dat);

 printf("\n%d is entered in the queue",dat);

 break;

 }

P a g e | 177

 case 2:

 {

 printf("\nDeleted Element is %d",DeQueue());

 break;

 }

 default:

 exit(1);

 }

 }

}

Output:-

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

1

Enter the data to insert in queue 2

2 is entered in the queue

Enter the choice of opertaion

1.Insert

2.Delete

P a g e | 178

Press any other key to exit

1

Enter the data to insert in queue 3

3 is entered in the queue

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

2

Deleted Element is 2

Enter the choice of opertaion

1.Insert

2.Delete

Press any other key to exit

2

Deleted Element is 3

Enter the choice of opertaion

1.Insert

2.Delete

P a g e | 179

Press any other key to exit

2

Queue Underflow

Dequeue operation failed

Discussions:-

 Queue is a data type which works on First-In-First-Out
Principle.

 Queue is widely used in CPU Scheduling, Asynchronous
data transfer.

P a g e | 180

Assignment No.17 Date:-

Problem Statement:- Write a program to reverse the order of
the elements in the stack using additional stack

Algorithm:-

Algorithm rev_st()

Input: A stack array „stack1‟ with data and „top1‟ is the pointer

to the stack.

Output: The order of array will be in reverse

Steps:

Initialise top1=0,top2=0,top3=0

While(top1>0) do

 top2=top2+1 //top2 is the pointer to additional stack

 stack2[top2]=stack1[top1] ///placing all the elements in
 top1

 top1=top1-1 //decreasing top

End while

While(top2>0)

 top3=top3+1 //top3 is the pointer to another additional
 stack

 stack3[top3]=stack2[top2] //placing all the elements in top3

 top2=top2-1

End while

While(top3>0)

 top1=top1+1 // again initialising top1

P a g e | 181

 stack1[top1]=stack3[top3] //putting back to stack1

 top3=top3-1

End while

Display stack1

Stop

Source Code:

#include<conio.h>

 #include<stdio.h>

 void reverse(int [],int [],int [],int *,int *,int *);

 void display(int [],int);

 void input(int [],int *,int);

 void main()

 {

 int total;

 int item,t,i,stack1[100],stack2[100],stack3[100];

 int top_1=-1,top_2=-1,top_3=-1;

 clrscr();

 printf("Enter size of stack::");

 scanf("%d",&total);

 input(stack1,&top_1,total);

 display(stack1,top_1);

 reverse(stack1,stack2,stack3,&top_1,&top_2,&top_3);

P a g e | 182

 printf("\nAfter reverse..............");

 display(stack1,top_1);

 getch();

 }

 void input(int stack[],int *top,int size)

 {

 int i,item;

 for(i=0;i<size;i++)

 {

 *top=*top+1;

 printf("Enter value of for position %d ::",*top);

 scanf("%d",&item);

 stack[*top]=item;

 }

 }

 void reverse(int stack1[],int stack2[],int stack3[],int *t1,int *t2,int
*t3)

 {

 while(*t1>-1)

 {

 *t2=*t2+1;

 stack2[*t2]=stack1[*t1];

 *t1=*t1-1;

P a g e | 183

 }

 while(*t2>-1)

 {

 *t3=*t3+1;

 stack3[*t3]=stack2[*t2];

 *t2=*t2-1;

 }

 while(*t3>-1)

 {

 *t1=*t1+1;

 stack1[*t1]=stack3[*t3];

 *t3=*t3-1;

 }

 }

 void display(int stack[],int top)

 {

 int i;

 while(top>-1)

 {

 printf("\nValue at %d is %d",top,stack[top]);

 top=top-1;

 }

P a g e | 184

 }

Output:-

Enter size of stack::3

Enter value of for position 0 ::1

Enter value of for position 1 ::2

Enter value of for position 2 ::3

Value at 2 is 3

Value at 1 is 2

Value at 0 is 1

After reverse..............

Value at 2 is 1

Value at 1 is 2

Value at 0 is 3

Discussions:

 The reverse is implemented with two additional stacks.
 Additional queue can be implemented for the reverse

P a g e | 185

Assignment No.18 Date:-

Problem Statement:- Write a program to reverse the order of
a stack using additional queue

Algorithm:-

Algorithm st_rev_qu()

Input: A stack „st‟ with a pointer to the stack called „top‟

Output: Elements of the stack will be in reverse order

Steps:

Initialise top=0,f=0,r=0 //f and r are queue pointers

Set f=1 //Initialise for dequeue

While(t>0)

 r=r+1

 qu[r]=stack[t] // placing the values in queue

 t=t-1

End while

While(f<=r)

 t=t+1

 stack[t]=qu[f] //replacing again in the stack

 f=f+1

End while

Display stack

Stop

P a g e | 186

Source Code:-

#include<conio.h>

 #include<stdio.h>

 #define MAX 20

 void show(int stack[],int size,int top)

 {

 int i;

 for(i=0;i<size;i++)

 {

 printf("\nValue at %d is %d",top,stack[top]);

 top=top-1;

 }

 }

 void reverse(int stack[],int qu[],int *t,int *r,int *f)

 {

 *f=0;

 while(*t>-1)

 {

 *r=*r+1;

 qu[*r]=stack[*t];

 *t=*t-1;

 }

P a g e | 187

 while(*f<=*r)

 {

 *t=*t+1;

 stack[*t]=qu[*f];

 *f=*f+1;

 }

 }

 void main()

 {

 int size;

 int item,t,i,stack[MAX],quee[MAX];

 int top=-1,front=-1,rear=-1;

 clrscr();

 printf("Enter size of stack::");

 scanf("%d",&size);

 for(i=0;i<size;i++)

 {

 top=top+1;

 printf("Enter value of for position %d ::",top);

 scanf("%d",&item);

 stack[top]=item;

 }

P a g e | 188

 show(stack,size,top);

 reverse(stack,quee,&top,&rear,&front);

 printf("\nAfter reverse..............");

 show(stack,size,top);

 getch();

 }

Output:-

Enter size of stack::3

Enter value of for position 0 ::3

Enter value of for position 1 ::2

Enter value of for position 2 ::1

Value at 2 is 1

Value at 1 is 2

Value at 0 is 3

After reverse..............

Value at 2 is 3

Value at 1 is 2

Value at 0 is 1

Discussions:-

 The additional queue is implemented to do the reverse

Plant tissue culture -Nano silver for removal of bacterial
contaminated in valerian(valeriana officinalis L.):A review

Hriday Home Chowdhury, Diya Bhattacharya, Manisha Bhagat

 ABSTRACT

Plant tissue cultures are a useful tool for studying cell wall production in live cells.Tissue

cultures also provide cells and culture medium where enzymes and cell wall Polymers can easily

be sepa-rated for further studies.Tissue cultures with tracheary element differentiation or

extracellular lignin formation have provided useful information related to several aspects of

xylem and lignin formation.Nanotechnology, at present, is one of the important areas for

investigation in sci-ences of modern materials based on nanoparticle (NP) properties that are

specific such as size, shape, and distribution.Applications with the use of nanomaterials and NPs

are developing fast .In plant tissue culture, there are several research based on

nanotechnology,specifically the use of NPs in seed germination,plant growth improvement,

plant genetic modification, plant protection, and some others.In this review, methods for

nutrient medium preparation, callus culture initiation, and its maintenance, as well as those for

protoplast isolation and viability observation, are described. As a case study we describe the

establishment of a nanotechnology in plant tissue culture. Bacterial contamination is a serious

problem in plant tissue culture procedures .An experiment was conducted to evaluate the

potential of nano silver (NS) to silver (NS) to remove bacterial contaminants of valerian nodal

explants.This experiment was conducted as a completely random-ized design in a factorial

arrangement with four replications and each replicate with ten explants.As this is the first

report on application of NS in in vitro culture techniques, further investigations on other plant

species are needed to clarify the effectiveness of NS for the removal of bacterial contaminants

in tissue culture of other crop.

Keywords: callus culture, initiation, maintenance, protoplast, explant, nanobiotecnology

Introduction

Plant tissue culture is a technique for cultivating plant cells, tissues, and organs on synthetic

medium in an aseptic environment with strict light, temperature, and humidity

controls.[1]Tissue cultures also provide cells and culture medium where enzymes and cell wall

polymers can easily be separated for further studies.The development of plant tissue culture as

a fundamental science was closely linked with the discovery and characterization of plant

hormones, and has facilitated our understanding of plant growth and

development.[2]Furthermore, the capacity to grow plant cells and tissues in culture and control

their growth is essential for plant genetic engineering and many other practical applications in

agriculture, horticulture, and industrial chemistry.We are living in the ‘Nano Age’, the era when

every aspect of life has a touch of nano, be it the cosmetics we use, the textiles we wear, the

appliances we use, the gadgets we employ, the food we eat, or the environment we live in;

whether we like it or not, nanomaterials are already in us, on us and around us.In plant tissue

culture, there are numerous reports that indicate positive inputs from nanotechnology.

[3]Nanoparticles (NPs) have been widely used to improve seed germination, enhance plant

growth and yield, enable plant genetic modification, improve bioactive compound production

and achieve plant protection.[4]The need to incorporate more of the new-age nanomaterials,

such as graphene and carbon buckyballs, and the possibility of creating nano-environments for

effective plant tissue culture are speculated upon in the future prospects section.[5]

2.Background of the plant tissue culture

Plant tissue culture dates back to at least 1902, when German botanist Gottlieb Haberlandt

(Haberlandt, 1902) hypothesised that single plant cells might be cultivated in vitro.In 1962,

Toshio Murashige and Skoog [6] published the composition plant tissue culture medium known

as MS (named for the first letters of their last names) medium, which now is the most widely

used medium for tissue culture.Commercial tissue culture was born in India in 1987 when A.V.

Thomasand Company Kerala (AVT) established their first production unit in Cochin for clonal

propagation of superior genotypes of selected cardamom plants.In 1988, a second

companyIndo-American Hybrid Seeds at Bangalore, Karnataka, who were in the nursery

business in hybrid flowers and vegetables, imported a tissue culture laboratory and

greenhouses with a capacity of 10 million plants/ annum)

3.Materials

 3.1. Nutrient Medium: A nutritional medium is a supply of nutrients that a plant would

ordinarily get from its surroundings receives from the soil There is also a carbon source in the

medium typically 1–4% w/v sucrose) and growth regulators that the plant requires in vitro cell

division and growth It’s possible to add a gelling agent.Solidify the medium(Pierik et al, 1997)

 Because different species (even genotypes) have distinct nutritional requirements for optimal

growth, a variety of nutrient media have been designed to meet those needs.

Plants that have been cultured in vitro. In order to choose a medium for the presentation,

 It is beneficial to conduct a literature search on the topics of interest. Table 1 shows the

results.We demonstrate some commonly used media that can be utilised as a starting

point.Explants with effective callus initiation are also listed, because the plant’s developmental

stage has a significant impact on the success of culture initiation.

The nutritional salt composition of the various media is shown in Table 2. Commercially

available macro- and microelement mixes can be purchased, or stock solutions can be made

from nutrient salts.Microelements, vitamins, and growth regulators can be manufactured as

100–1,000 stock solutions , whereas macroelements can be synthesised as a 10 times

concentrated (10) stok Solution.

After combining all medium components except The gelling agent, adjust the pH, adjust for the

final volume, add the gelling agent (e.g. agar), and autoclave the medium at 121°C for 20

minutes.Allow the medium to cool to around 60°C. Filter-sterilize the heat-labile compounds in

a laminar air-flow cabinet and pour the medium onto Petri dishes (ca. 25 mL medium/Petri dish

with a diameter of 9 cm).

3 2. Surface

Sterilisation: 1. 70% (v/v) ethanol.

2. Diluted Na-hypochlorite: NaClO, 1–2% (v/v) active chlorine,

Supplemented with a couple of drops of Tween 20.

3. Sterile distilled water.

4. 96% (v/v) ethanol for flaming.

5. Forceps.

6. Scalpels.

7. Sterile Petri dishes.

8. Parafilm®.

3.3 Maintenance: 1. Fresh nutrient medium with a gelling agent or, alternatively, without the

gelling agent.

2. 96% (v/v) ethanol for flaming.

3. Forceps.

4. Parafilm®.

5. Sterile 5 mL pipette tips with cut tips.

6. Sterile measuring cylinders (e.g. 25 mL in volume).

7. Orbital shaker (in the case of liquid cultures).

8. Temperature- and light-adjusted growth chamber.

3.4. Protoplasts: 1. Preplasmolysis solution, enzyme solution, and nutrient medium for

protoplast cultivation according to (Table 3).

2. Syringes.

3. Syringe filters (0.2 mm pore size).

4. Forceps.

5. Scalpels.

6. 96% (v/v) ethanol for flaming.

 7. Sterile nylon or steel sieves (70–100 mm pore size), screw-cap centrifuge tubes.

8. 20% (w/v) sucrose solution (autoclaved).

9. Fuchs-Rosenthal modified haemocytometer.

10. Microscopic slides.

11. Cover glasses.

12. Agars with low melting point (m.p.)specifically designed for protoplast culturing (e.g. A8678

Agar washed, m.p. 25–27°C; A7921 Agar purified, m.p. 30–35°C, Sigma).

13. Sterile pipette tips.

14. Petri dishes.

15. Parafilm®.

Viability stains:

16. 5–10 mg/mL fluorescein diacetate (FDA) in acetone (stock solution). This is then diluted

immediately prior to use by adding 20 mL of the stock solution to 1 mL of 0.65 M mannitol.

17. 0.025–0.25% (w/v) Evans blue (EVB) in 0.65 M mannitol.

18. 0.025–0.25% (w/v) Methanol blue in 0.65 M mannitol.

19. 0.1% (w/v) Phenosafranine in 0.65 M mannitol.

20. 0.01–0.1% (w/v) Tinopal CBS-X (disodium 4,4΄-bis[2-sulfostyryl)biphenyl) in 0.65 M

mannitol.

3.5. Zinnia Cultures

2.5.1. Germination

Of Zinnia Seeds: 1. 0.25% Na-hypochlorite.

2. Mesh strainer.

3. Vermiculite.

4. Plastic trays.

5. Growth chamber.

6. Liquid fertiliser: e.g. HYPONeX;N:P:K=6:10:5 (HYPONeX

Japan, Osaka). Dilute 1:100 before use.

3.5.2. Isolation and Culture

Of Mesophyll Cells: 1. Table 4 shows the composition of the nutrient medium (see

Note 8). Frequency of TE differentiation is optimal when

The nutrient medium is supplemented with 0.89 mM

6-benzyladenine (BA) and 0.54 mM 1-naphtalene acetic acid

(NAA). Medium without BA and/or NAA can be used for

Control cultures in which TE differentiation does not occur.

2. 0.1% Na-hypochlorite with 0.001% (w/v) Triton X-100.

3. Sterile distilled water.

4. Sterile labware: Waring-type blender, stainless-steel cups,

Nylon mesh (50–80 mm pore size), screw-cap centrifuge tubes,

Pipette tips, culture tubes (30 mm internal diameter (i.d.)

×200 mm, 18 mm i.d.×180 mm or 12 mm i.d.×105 mm)

Capped with aluminium foil.

5. Revolving drum.

6. Growth chamber.

3.5.3. Observations

Of Zinnia Cells: 1. Glutaraldehyde.

2. 0.2 mg/mL 4΄,6-diamidino-2-phenylindole (DAPI), 1 mM SYTO16 in DMSO (Molecular Probes).

3. Microscopic slides.

4. Cover glasses.

5. Haemocytometer. [7]

4.Methods:-

4.1. Surface

Sterilisation: The goal of surface sterilisation is to eliminate microorganisms from plant

materials while leaving the plant tissue alone.

It is critical to choose a healthy plant tissue as an explant for culture initiation. Wash the plant

organ with tap water if necessary, then cut it.Cut it into 1 cm pieces. The seeds have not been

surface sterilised. Execution Procedures are carried out aseptically in a laminar air-flow system.

1. Pretreat the explants for 30–60 sec in 70% (v/v) ethanol.

2.Transfer the pieces to a diluted Na-hypochlorite solution containing 1–2 percent (v/v) Na-

hypochlorite and a few drops of Tween 20. Incubate for 5–30 minutes, stirring occasionally.

3. Rinse the explants three times with sterile distilled water (at least 1 minute of incubation

between rinses to remove all surface sterilants). To transfer the fragments from one solution to

the other, use alcohol-flamed forceps[8]

4. Because contact with the surface sterilising agent damages the cut surfaces of the plant

material, cut the surfaces fresh using a sterile scalpel using half of a sterile Petri dish as a

cutting board.

5. Dissect the tissue of interest (e.g. embryo, cambial strips) from the seed/plant organ

aseptically and place it on the initiation medium’s surface. If necessary, use a stereomicroscope

in the laminar air-flow cabinet. Seal the dish with a strip of Parafilm.[8]

4.2. Growth Conditions:

Plant species have different temperature and light requirements.

If there is no information in the literature on the in vitro growth circumstances of the species

(or similar species) of interest, you might choose the light and temperature conditions in which

the plant grows in vivo.

A constant temperature (e.g., +25°C) is typically used; alternatively, the temperature is dropped

at night (+25°C during the day, +20°C at night).The choice of lamp determines the quality of the

light.Fluorescent warm white bulbs are preferred by some species, such as Norway spruce.[9]

The intensity and rhythm of light are quite essential. Unless any information is accessible in the

literature, you can only approximate these numbers by trial and error. Light intensities of 20–

200 mmol/m2/s are commonly employed. However, some in vitro cultures are grown in the

dark.[9]

4.3. Maintenance:

Callus development appears at the margins of the explant after 2–6 weeks in culture (Fig. 1).

You must subculture callus in order to provide fresh nutrients and growth regulators to the

cells. Depending on callus growth, subculture cells at 1- to 4-week intervals. At this point, you

may need to make changes to the nutrient medium in terms of nutrient and growth regulator

concentrations and types.

1. Subculture callus by transferring the freshest cells (typically at the callus’ edges) onto

fresh medium with flamed for- ceps (see Note 10). The inoculum should be kept at a

consistent size (about 0.90.90.5 cm;)

It is not a good idea to transfer inoculums that are too tiny, since it takes longer for cells to start

dividing once they have been subcultured. If you subculture inoculums that are too large, the

cells divide too quickly and enter the stationary phase too soon (they also fill the growth

container). Subculturing will be done more frequently as a result of this.

2. Callus can also be transferred into a liquid culture (Fig. 1b).Make the nutritional medium

without the gelling agent and aliquot it into 25 mL aliquots into 100 mL flasks for this.Using a

second layer of aluminium foil, seal the flask and auto-clave it.Inoculate the liquid medium with

the most friable callus cells (ca. 0.5 g of cells into a 25 mL medium). Whether you get a fine cell

suspension with single cells and small cell aggregates or a callus that grows in huge clumps with

no cell dissociation depends on the type of callus.

3. Keep the cultures in an orbital shaker (100 rpm) for aeration in the same growth conditions

as solid media cultures.

4. Allow cells to settle to the bottom of the flask and subculture at regular intervals into fresh

medium (see above).Take out some of the culturalitems.Use a 5-mL cut, autoclaved pipette tip

or a measuring cylinder to transfer about 5 mL of cells into 20 mL of fresh media.[10]

4.4. Protoplasts:

Protoplasts are plant cells that have had their cell walls digested by the enzymes pectinases,

hemicellulases, and cellulases, which degrade plant cell walls (Table 5). Enzymatically,

protoplasts can be iso-lated in two ways. The cells are first divided into cell suspensions by

pectinases, which breakdown the pectinous middle lamella between the cells in a two-step

procedure.

Cellulases and hemicellulases are then used to breakdown the residual cell walls.

A combination of pectinases and celtinases is used in the one-step process.At the same time,

lysates are produced for cell wall digestion.[10]

Plant components such as root tips and leaves, as well as suspension-cultured and callus cells,

can be used to make protoplasts. Because protoplasts lack a cell wall, they are highly

susceptible to osmotic stress and must be handled in an isotonic/slightly hypertonic solution.

To avoid a rupture Protoplast nutrient medium needs are very similar to those of plant cells in

culture.

Extra calcium is added to help stabilise plasma membranes, and the MS and B5 mediums

are optimised for diverse applications.Species are frequently required.[11,12]

Protoplasts can be used in plant breeding by protoplast fusion or transformation of related

species. Regenerative cells can be stimulated to become plant after their cell walls have

developed.

Surveillance.Protoplasts are also a great way to learn about cell walls.across cell membranes

for production or transfer.

After a normal 24–36 hour incubation period, protoplasts establish a cell wall and are capable

of division. Protoplasts lose their distinctive properties.Once the wall creation is finished, it will

take on a spherical shape (Fig. 2).[11,12]

4..4.1. Protoplast Isolation

Prepare the preplasmolysis and enzyme solutions according to

Table 3. Then continue as described below.

LEAVES:

1. Surface sterilise young, fully expanded leaves as described in

Subheading 3.1.

2. In a Petri dish containing a small volume (10 mL) of the pre-plasmolysis solution, cut the

leaf into narrow sections with a sharp scalpel. Peeling of the abaxial epidermis hastens.

Enzymes break down cell walls as they enter the intracellular space, allowing them to more

easily reach local regions.

SUSPENSION-CULTURED CELLS:

3. Separate the cells from the culture by centrifuging an actively growing cell suspension culture

(10 mL) for 5–10 minutes at 50–100g in the early logarithmic or exponential stage of growth

medium.

4. After centrifugation, decant the media and place the cells in a Petri dish with the

preplasmolysis solution.

CALLUS CULTURE :

5. Transfer actively growing callus cells (from the edges of callus

Pieces) into a Petri dish containing the preplasmolysis solution.

6. In the preplasmolysis solution, incubate the plant material. Replace the preplasmolysis

solution with the enzyme solution after 30 minutes. Incubate in the dark at room temperature

for 0.5–20 hours.

7. After incubation, shake the Petri dish gently to see that the

Tissue is digested; if not, incubate for 1–2 more hours.

8. Pipette protoplasts through a nylon or steel sieve (pore size 70–100 mm) into a sterile screw-

cap centrifuge tube to remove cell debris.Centrifuge at 50–100g for 5–10 minutes.

9. In the preplasmolysis solution, resuspend the protoplast pellet. Alternatively, separate

protoplasts from cell detritus by pipetting the protoplast suspension over a 20% (w/v) ethanol

solution.solution of sucrose.

10. Centrifuge at 50–100g for 5–10 minutes.

Protoplasts float at the interface of the sugar layer and the enzyme solution, and cell detritus

settles to the tube’s bottom. Place the protoplast on the surface.Pour a fresh sucrose solution

on top, then wash it for a second time. Three occasions. Protoplasts should be suspended in the

nutrient solution.density-appropriate media. [13]

4.4.2. Protoplast Viability

Tests: The viability of protoplasts can be determined using several dyes that distinguish

between viable and non-viable cells. To prevent protoplast rupture, appropriate osmoticum

must be added to the staining solution. EVB is an acronym for Electronic Video

Broadcasting.Living cells are not dyed blue, and only dead ones are.Methanol blue (MB) enters

both living and dead cells, but it is converted to a colourless molecule in living cells.

Phenosafranine (PS) stains dead protoplasts red when it enters them. TheFDA collects

fluorescent dyes inside protoplasts. FDA is cleaved to fluorescent fluorescein in vegetative cells

by an esterase.Only dead cells are permeable to Tinopal CBS-X.[13,14]

1. Select the dye you will use in your viability staining. Prepare

It as described in Subheading 2.4.

2. On a microscopic slide, mix equal volumes of staining solution

And the protoplast suspension and overlay with a cover glass.

3. Using a light microscope, examine EVB, MB, or PS and count the number of dead protoplasts

per all protoplasts in selected fields.

4. Using a fluorescent microscope with excitation and emission wavelengths of 440–490 nm

and 510 nm, respectively, observe FDA (FITC, fluorescein isothiocyanate filter combination).

The fluorescence of living protoplasts is quite brilliant.

5. For Tinopal CBS-X, use excitation and emission wavelengths of 334–385 nm and 420 nm,

respectively. The fluorescence of viable protoplasts is blue.

5.4.3. Culturing

Of Protoplasts:

Protoplasts are commonly cultivated on agar that is semi-solid.in a liquid medium or in a solid

medium MS salts or B5 salts [15,16]

Extra osmoticum, sorbitol, and mannitol were added to the medium.

Sucrose or glucoseare commonly used(Table3)

1.Combine molten agar with a double density protoplast suspension at double the

concentration recommended in the recipe last culture Make sure the agar isn’t too hot since

This will destroy your protoplasts (the agar level should be just above the melt point). Ing point

(about 330°C).

3. Pipette quickly as small droplets (100–200 mL) or plate evenly

Onto Petri dish.

4. Cover plates with Parafilm and incubate at room temperature in diffuse light (5–10

mmol/m2 /s).[15]

5.5. Special Case in Zinnia Cultures

 Fukuda and Komamine developed an in vitro experimental system in which single Z. elegans

mesophyll cells redifferentiate into TEs without the need for cell division (Fig. 3)(Fukuda,et al,

1980).TE isa term that refers to a period of time.Cell wall structures undergo dynamic

modifications throughout development, such as localized thickenings and lignification of

secondary cell walls are examples of this. Perforation of primary cell walls and partial

degradation of primary cell walls.Active cell wall degradation occurs concurrently with

secondary cell wall construction in growing TEs in Zinnia xylogenic culture; pectin is one of the

most actively degraded components.Thus, using an in vitro xylogenic culture

system,mechanisms relating to cell wall structural alterations can be investigated.

5.5.1. Germination

Of Zinnia seeds:

For the in vitro xylogenic culture, the first true leaves of 14-day-old Z. elegans seedlings were

used. Mesophyll cells should be harvested from healthy leaves that have been carefully

developed under ideal conditions.

1. Surface sterilise seeds of Z. elegans cv. Canary bird or Envy in 0.25% Na-hypochlorite solution

for 10 min with occasional shaking.

2. Wash the seeds with running water for 10 min in a mesh strainer.

3. Sow seeds in moistened vermiculite (0.1 g of seeds/100 cm2) in plastic trays.

4. Grow seedlings at 25° C for 14 days with a 14-hour light and 10-hour dark cycle

(approximately 100 mmol/m2 /s, white light from fluorescent lamps). The humidity level in the

growing chamber should not exceed 45 percent. When the surface of the vermiculite is dry, add

water . On the fourth day after sowing, feed a 100-fold diluted liquid fertiliser .[16]

5.5.2. Isolation and Culture

Of Mesophyll Cells:

Single Z. elegans mesophyll cells can be isolated by mechanical maceration with a Waring-type

blender due to the weak attachment between mesophyll cells. Vascular and epidermalThe cells

are removed by passing the cell homogenate through a filter.Because of their high attraction to

one another, a nylon mesh is used.The procedure for isolating and cultivating mesophyll cells is

discussed below.

1. Harvest first true leaves (80–120 leaves) that are 3–4 cm in length.

2. Surface sterilise leaves for 10 min in 0.1% Na-hypochlorite solution supplemented with

0.001% (w/v) Triton X-100 with occasional stirring.

3. Rinse the leaves with autoclaved water three times.

4. Transfer the leaves into a 100-mL stainless-steel cup containing 60 mL of nutrient medium.

5. Macerate the leaves at 10,000 rpm for 40 s using a Waring-type blender (Fig. 4a, b,).

6. Filter the homogenate through a nylon mesh (Fig. 4c, pore size 50–80 mm) by pipetting using

a large-bore pipette. Wash the homogenate that remains on the nylon mesh with 40 mL of

additional nutrient medium.

7. Centrifuge the filtrate at 200×g for 1 min.

8. Remove and discard the supernatant with a pipette or by decantation. Suspend the pelleted

cells in 80 mL of nutrient medium by gentle shaking.

9. Centrifuge again at 200×g for 1 min.

10. Resuspend the pelleted cells in nutrient medium at a cell density of ca. 8×104 cells/mL.

11. Distribute the cell suspension into culture tubes (20 mL for a tube of 30 mm i.d.×200 mm, 3

mL for a tube of 18 mm i.d.×180 mm, and 1 mL for a tube of 12 mm i.d.×105 mm)

Capped with aluminium foil.

12. Incubate cultures in darkness at 25–27°C on a revolving drum at 10 rpm at an angle of

elevation of 8° (Fig. 4d,) [17]

5.5.3. Determination

Of Frequencies of TE

Differentiation and Cell

Division: 30-50% of cells synchronously develop into TEs after 72 hours of incubation.

Characteristic patterns of secondary cell walls, visible even under a light microscope, can easily

be detected (see Note 32). As a result, the number of TEs generated can be counted without

any pre-treatment using a haemocytometer.The number of TEs per number of live cells plus TEs

is used to calculate the frequency of TE formation. Since all mesophyll cells start off as single

cells, the number of septa can be used to estimate the frequency of cell division.

5.5.4. Observation

Of Zinnia Cells: The unusual cell wall thickenings visible under a light microscope identify TEs

from other cells, as discussed above.TEs can also be recognised by using phloroglucinol-HCl or

fluorochrome-conjugated wheat germ agglutinin to stain lignified secondary cell walls Isolated

Z. elegans cells are suitable for Z. elegans isolated cells can be observed using a fluorescence

microscope as well as a con-focal laser scanning microscope. Intracellular components,

including nuclei, are lysed autonomously as TEs mature. The staining of nuclei with a DNA-

specific fluorochrome, DAPI, can be used to monitor this stage of differentiation.

1. Fix the cells by adding glutaraldehyde to a final concentration of 2% (v/v).

2. Add 1/100 volume of 0.2 mg/mL DAPI and incubate briefly in dark. Observe the nuclei under

ultraviolet light using a fluorescence microscope.

3. Add 1/1,000 volume of 1 mM SYTO16 to living TEs and incubate for 10 minutes to visualise

the nuclei. Use a fluorescence microscope to find out. The fluorescence is detected at 515–545

nm when the dye is activated at 488 nm .[18,19]

6.NEED FOR LOW COST TISSUE CULTURE TECHNOLOGY

Tissue culture technology’s commercial applicability is limited due to high production

costs.[20,21]As a result, the most difficult part at the moment is to minimise manufacturing

costs while increasing production efficiency.[22,23,24]Tissue culture at a low cost is particularly

important not just for farmers, but also for large-scale commercial replication on a regular basis

[26]Nutrients/media chemicals (plant growth hormones, vitamins and minerals nutrients), plant

materials, equipment (culture containers, autoclave, laminar flow, instruments used for

micropropagation, pH metre, etc.) and infrastructures (media preparation, inoculation, growth

and hardening rooms) are among the various plant tissue culturing components.[27]

6.Application of nanomaterial in valerian tissue culture(nano silver)

Successful tissue culture of all plants depends on the removal of exogenous and endogenous

contaminating microorganisms.[28]Fungi and bacteria are the most common microorganisms

to be found on or in plant tissues. To eliminate bacterial contamination during in vitro

propagation,different methods have been developed in the last few years.[29]Teixeira da Silva

et al.(2003) reported a decrease in explant survival and biomass reduction, malformation of

roots and inhibition of shoot formation in chrysanthemum, and also in tobacco

endoreduplication by application of antibiotics in the media. Nano silver (NS) has shown to

have antibacterial,antifungal and antiviral effects. [30] Studies have demonstrated that silver

ions interact with sulfydryl (–SH) groups of proteins as well aswith the bases of DNA leading

either to the inhibition of respiratory processes. [31]They interact with a wide range of

molecular processes within microorganisms resulting in a range of effects from inhibition of

growth, loss of infectivity through cell death.The mechanism depends on both the

concentration of silver ions present and the sensitivity of the microbial species to silver.Contact

time and temperature can have impact on both the concentration.[32]The effects of NS

solution on growth, proliferation rate and rooting were studied and compared with non-NS

treated materials.

6.1 Materials and methods

6.1.A nano silver preparation

The nano-particles used in this experiment were silver particles 35 nm (average) in size. Figure 1

show the transmission electron microscopy (TEM) micrograph of silver (Ag) nano-particles. The

base working silver (Ag) nano-particles. The base working fluid was pure water. Ag nano-fluids

were prepared using a two-step method. Ag nano-particles were prepared first. They were

produced using a catalytic chemical vapour deposition method (Nanocid Company Method).

The Ag nano-particles were then added to pure water. No surfactant was used in the Ag nano-

fluid suspensions. The mixture was prepared using an ultrasonic homogenizer. Nano-fluid

concentrations at 25, 50 and 100 mg l-1 were used in this study. Some atomic and physical

properties of NS used in this study are presented in Table 1.

Plant materials and culture conditions

Greenhouse grown valerian (Valeriana officinalis L.) mother plants were used in this study.

These plants were tested by culturing their stem explants in potato dextrose agar (PDA)

medium for internal contamination assay. The explants were first surface sterilized with 70%

ethanol for 1 min and 10% Clorox (containing 5.25% sodium hypochlorite) for 1 min and then

rinsed four times with sterilized distilled water. The cause of internal contamination was

identified with special laboratory methods, in the Department of Plant Pathology, Shiraz

University, as Xanthomonas genus. After testing, the mother plants were divided into two

groups: with internal contamination (group 1) and without internal contamination (group 2).

For group 1, a number of 20–25 cm stems were cut and transferred to the laboratory

immediately. They were cut to the length of about 0.5–1 cm and prewashed in water

supplemented with 10 drops of a weak household detergent solution for 10 min and then

placed under running tap water for at least 30 min. Nano silver solution at different

concentrations (25, 50 and 100 mg l-1) and exposure times (30, 60, 180, 300, 600 and 1,200

min) was used at two stages; before and after surface sterilization along with the control. Initial

experiment showed that in high exposure times (300, 600 and 1,200 min) explants turned to

bleach.Therefore, high exposure time’s results were omitted.For the treatment without surface

sterilization, after prewashing in water and keeping under running tap water,nodal segments

were dipped at appropriate times and concentrations of NS solution. After this treatment, the

explants were rinsed four times with sterilized distilled water. For the treatment before surface

sterilization, after dipping explants in NS solution, the explants were surface sterilized (as

mentioned above). For the treatment after surface sterilization, the explants were rinsed with

sterilized distilled water and dipped in NS solution with appropriate concentrations at different

times. After recut,the sterilized explants were dipped in NS solution before being transferred to

the culture vessels. After sterilization,about 1 cm single node explants were cultured on a

modified MS (Murashige and Skoog 1962) medium containing salts, organic constituents, 30 g l-

1 sucrose,8gl-1 agar and 5 mg l-1 Kin and 0.1 mg l-1 NAA Abdi 2006). The pH of media was

adjusted to 5.8 by (0.1 N HCl before autoclaving for 15 min at 121°C and 1.5 kg cm-2 pressure.

Cultures were kept under a 16 h photoperiod of 30 mm m-2 s -1 light intensity emitted by two

cool white fluorescent lamps at 25 ± 3°C.Explants in group 2 were just prewashed, surface

sterilized and cultured without NS treatment. All the cultural conditions in this group were

similar to those in group 1.[33]

Data collecting

The percentages of infected explants were recorded 3 days after culture for without surface

sterilization treatment. For estimation of size and growth of bacterial and fungal colonies the

grades of 1 (lowest) to 5 (highest) contamination were given. For other treatments, the

percentages infected explants were recorded 3 weeks after cultures. The experiment was

conducted as a completely randomized design in a factorial arrangement with four replications

and each replicate with ten explants. Means were compared using Duncan’s new multiple

range test (DNMRT) at 5% probability level. Impact of the NS on subsequent shoot formation

and rooting was assessed in four subcultures with 4 week intervals.[34]

Results

Using NS solution without surface sterilization did not affect the contamination. In control,

visible fungal contaminations were observed only 3–5 days after culture,while, the bacterial

contaminations were observed 7–10 days after culture, in the other treatments, colony

appearance was delayed by at least 6–8 and 12–18 days for fungal and bacterial

contaminations, respectively. The size and growth of the colonies varied significantly among

treatments. In the control treatment, growth of the colonies was quick; whereas, in the other

treatments depending on exposure time and concentration of NS solution the influence on

growth was negligible (Table 2).

Cultures subjected to NS solution treatment before surface sterilization showed low percentage

of disinfected valerian explants (Table 3). In all the treatments, the percentage of fungal

contamination was zero. Among the treatments, highest percentages of disinfection (32%)

were observed when the explants were dipped in 100 mg l-1 NS solution for 180 min.

Using NS solution after surface sterilization was successful. Treatment with 100 mg l-1 of NS for

180 min after rinsing the explants in sterilized distilled water was the most successful

disinfection treatment. This treatment had significant differences with other treatments. The

11% contamination left after this treatment was bacterial contamination (data not shown).

Also, this treatment did not have any negative impact on measured characters in

micropropagation of valerian in four subsequent subcultures.

Group 2

As mentioned above, explants in this group did not show any contamination during culture

period. Comparing this group with explants obtained from NS solution treatment after surface

sterilization did not show any significant differences in measured characters (proliferation rate,

leaf number, percentage of fresh weight, number of rooted explants, number of roots and root

length) in micropropagation of valerian in four subsequent subcultures (data not shown)

Discussion

Novel approaches for controlling the contamination in plant tissue culture, screening the

contaminants, disinfestation of explant methods using activated charcoal or

diethylpyrocarbonate, elimination of microbial contaminants using density gradient

centrifugation, flexible container system,repeated subculture, low free-water medium,

acidification,egg white lysozyme and antibiotics are reviewed in the book edited by Herman.[7]

Silver and its compounds have long been used as antimicrobial agents.[8,9] The most important

silver compound currently in use is silver sulfadiazine (AgSD), although silver metal, silver

acetate, silver nitrate and silver protein have antimicrobial effect too Using AgNO3 as silver

compound against infection in tissue culture is common .[34]

Explant methods using activated charcoal or diethylpyrocarbonate, elimination of microbial

contaminants using density gradient centrifugation, flexible container system,repeated

subculture, low free-water medium, acidification,egg white lysozyme and antibiotics are

reviewed in the book edited by Herman.[7] Silver and its compounds have long been used as

antimicrobial agents.[35,36] The most important silver compound currently in use is silver

sulfadiazine (AgSD), although silver metal, silver acetate, silver nitrate and silver protein have

antimicrobial effect too Using AgNO3 as silver compound against infection in tissue culture is

common .[34]

Our results showed that silver in nano size can similarly control the bacterial infection in tissue

culture conditions. Also, subcultures indicated that bacterial contaminations were removed

because the late appearance of contamination was not observed in subsequent subcultures. In

general, using NS solution after surface sterilization had acceptable influence on the bacterial

contaminants control without any adverse effects on growth characters in micropropagation of

valerian. However, it was not effective in controlling the fungi in this experiment. The

differences in the effects of NS treatment before and after surface sterilization may be due to

the presence of NS in NS solution treatment after surface sterilization at the cut end of the

explants inside the medium.After recut, the sterilized explants were dipped in NS solution

before being transferred to the culture vessels.However, in NS solution treatment, before

surface sterilization explants were washed with distilled water and then transferred to the

medium. A method has been suggested by Salehi and Khosh-Khui (1997) for controlling

bacterial contamination in miniature roses. They used gentamicin solution after surface

sterilization. Using NS may be more convenient and less toxic than using antibiotics in the

medium. Furthermore, using other methods for controlling the infection like first acidification

of the medium and later regulation of pH to normal condition and price may be time

consuming methods in tissue culture techniques.[37,38]Showing acceptable antibacterial

activity in this investigation is in agreement with the results obtained by other investigators .

[39,40]

Since, this is the first report of NS application in the tissue culture methods, further studies are

needed on using this chemical in in vitro culture of other species.

References

1.E Evans, JOD Coleman and A Kearns, Plant Cell Culture, Bios Scientific

Publishers, Taylor & Francis Group, London, p.1, 2003.

2.S S Bhojwani and M K Razdan, Plant Tissue Culture: Theory and Practice,

A revised edition, Elsevier, New Delhi, p.3, 2004.

3.K. Keren , R. S. Berman , E. Buchstab , U. Sivan and E. Braun , Science, 2003,

302 , 1380 —1382

4.M. K. Sarmast and H. Salehi , Mol. Biotechnol., 2016, 58 , 441

5.B. Ruttkay-Nedecky , O. Krystofova , L. Nejdl and V. Adam , J. Nanobiotechnol.,

2017

6.Bijalwan, P. (2021). Plant Tissue Culture-A New Tool for Vegetable

Improvement (Indian scenario): A Review. Agricultural Reviews, 42(2).

7.Pierik, R.L.M. (1997) In vitro culture of higher plants. 4th ed. Kluwer,

Dordrecht. 348 p.

1. Fukuda, H., and Komamine, A. (1980)

Establishment of an experimental system for the tracheary element

differentiation from single cells isolated from the mesophyll of Zinnia elegans.

Plant Physiol 65, 57–60.

9.Kärkönen, A., Koutaniemi, S., Mustonen, M.,

Syrjänen, K., Brunow, G., Kilpeläinen, I., Teeri, T.H., and Simola, L. K. (2002)

Lignification related enzymes in Picea abies suspension cul-tures. Physiol Plant

114, 343–353.

10.Simola, L.K., and Santanen, A. (1990)

Improvement of nutrient medium for growth

And embryogenesis of megagametophyte and embryo callus lines of Picea abies

Physiol. Plant

80, 27–35.

11.Bajaj, Y.P.S. (1996) Plant protoplasts and

Genetic engineering VII. Springer, Berlin. 317 p. ISBN 3-540-60876-1.

12. Murashige, T., and Skoog, F. (1962) A revised medium for rapid growth and

bio assays with tobacco tissue cultures. Physiol Plant 15,473–497.

13. Gamborg, O. L., Miller, R. A., and Ojima, K. (1968) Nutrient requirements of

suspension cultures of soybean root cells. Exp Cell Res50, 151–158.

14. Widholm, J. M. (1972) The use of fluorescein diacetate and phenosafranine

for determining viability of cultured plant cells. Stain Technol47, 189–194.

15. Huang, C. N., Cornejo, M. J., Bush, D. S.,

And Jones, R. L. (1986) Estimating viability

Of plant protoplasts using double and single staining. Protoplasma 135, 80–87.

16. Ohdaira, Y., Kakegawa, K., Amino, S.,

Sugiyama, M., and Fukuda, H. (2002) Activity of cell-wall degradation associated

with differentiation of isolated mesophyll cells of Zinnia elegans into tracheary

elements. Planta 215,177–184.

17. Siegel, S. M. (1953) On the biosynthesis of lignin. Physiol Plant 6, 134–139.

18. Hogetsu, T. (1990) Detection of hemicelluloses specific to the cell wall of

tracheary elements and phloem cells by fluorescein-conjugated

lectins.Protoplasma 156, 67–73.

19. Obara, K., Kuriyama, H., and Fukuda, H.

(2001) Direct evidence of active and rapid

Nuclear degradation triggered by vacuole.

20..Kozai T, Kubota C, Jeong BR, et al. Plant cell tissue and organ culture.

1997;51:49–56.

 21. Babbar SB, Jain R curr. Microbol.2006;52.287:292

22.Anderson WC, Meagher GW. Horticult. Sci. 1977;126:543-544

23. Sluis CJ, Walker KA. Newslett. Int. Ass. Plant Tissue Cult. 1985;47:2-12

 24. Donnan A. Determining and minimizing production costs In: Tissue

culture as a plant production system for horticultural crops Zimmerman RH,

Grierbach RJ, Hammerschlag FA, Lawson RHeds, Martinus Nijhoff Publishers

Boston. 1986; 163-173

25.Thro MA, Roca W, Restrepo J, Caballero H, Poats S, Escobar R, Mafla G,

Hernández C, et al. Cell Dev. Biol. Plant. 1999;35:382-387.

26. Ganapathi TR, Mohan JSS, Suprasanna P, Bapat VA, Rao P S, et al current

science 1995:68:640-665

27.Buckley PM, Reed BM (1994) Antibiotic susceptibility of plant associated

bacteria. HortScience 29:434(Abst)

28.Constantine DR (1986) Micropropagation in the commercial environment. In:

Withers L, Alderson PG (eds)Plant tissue culture and its agricultural applications.

Butterworth,London, pp 175–186

29.Sondi I, Salopek-Sondi B (2004) Silver nano particles as antimicrobial agent: A

case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface

Sci 275:177–182.

30.Nomiya K, Yoshizawa A, Tsukagoshi K, Kasuga NC, Hirakava S,Watanabe J

(2004) Synthesis and structural characterization of silver (I), aluminium (III) and

cobalt (II) complexes with 4-isopropyltropolone (hinokitiol) showing noteworthy

biological activities. Action of silver (I)-oxygen bonding complexes on the

antimicrobial activities. J Inorg Biochem 98:46–60.

31.Abdi, G., Salehi, H., & Khosh-Khui, M. (2008). Nano silver: a novel

nanomaterial for removal of bacterial contaminants in valerian (Valeriana

officinalis L.) tissue culture. Acta Physiologiae Plantarum, 30(5), 709-714.

32.Dibrov P, Dzioba J, Khoosheh K, Gosink K, Claudia C (2002)Chemiosmotic

mechanism of antimicrobial activity of Ag+ inVibrio cholerae. Antimicrob Agents

Chemother 46:2668–2670

33.Herman EB (ed) (1996) Microbial contamination of plant tissue cultures.

Agritech Consultants Inc, Shrub Oak, USA, 84 p.

34.Brown MRW, Anderson RA (1968) The bactericidal effect of silver ions on

Pseudomonas aeruginosa. J Pharm Pharmacol 20(Suppl):1S–3S

35.Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog

Med Chem 31:351–371.

36..Leifert C, Cammota H, Waites WM (1992) Effect of combinations of

antibiotics on micropropagated Clematis, Delphinium, Hosta,Iris and Photinia.

Plant Cell Tissue Organ Cult 29:153–160

37..Hussain S, Lane SD, Price DN (1994) A preliminary evaluation of the use of

microbial culture filtrates for the control of contaminants in plant tissue culture

systems. Plant Cell Tissue Organ Culture 36:45–51

38.Sondi I, Salopek-Sondi B (2004) Silver nano particles as antimicrobial agent: A

case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface

Sci 275:177–182

39.Thurmann RB, Gerba CP (1989) The molecular mechanisms of copper and

silver ion disinfection of bacteria and viruses. Critic Rev Environ Cont 18:295–

315.

40.Smart DR, Ferro A, Ritchie K, Bugbee BG (1995) On the use of Antibiotics to

reduce rhizoplane microbial populations in root physiology and ecology

investigations. Physiol Plant 95:533–540

